RAPID

3D Technologies a Vital Component of First Face Transplant Procedure in Belgium

Eplus 3D

Share this Article

Despite the fact that the 1997 movie Face Off made the transferring of a face from one person to another look as simple as going to the dentist for a routine cleaning, the procedure itself is, in fact, much newer than that and still in the early phases of its development. It was only in 2005 that the first successful partial face transplant was undertaken on a woman in France who had lost her nose, lips, chin, and part of her cheeks when she was bitten by her own dog. Five years later, in 2010, the first full face transplant was undertaken in Spain on a farmer who had accidentally shot himself in the face, leaving him without the ability to eat or breathe on his own. In a 24-hour procedure, surgeons were able to remove the entire face of the donor and place it, somewhat akin to a mask, on the face of the patient.

In 2011, a patient in Belgium surfaced who was a candidate for a full face transplant. The man had suffered a severe facial trauma resulting in a complex facial deformity that affected both his soft tissue and bone. The team of surgeons, led by Prof. Phillip Blondeel, had been working with 3D technology and understood the potential of 3D modeling and printing to assist in such unique, personalized medical interventions. The procedure, the world’s 19th face transplant, was a very complex one as it involved not only skin and muscle, but a significant portion of mid face bone. For assistance planning and preparing for the surgery, they turned to the team of clinical engineers at Materialise who were able to assist them using ProPlan CMF software.

The fact that the patient had survived the trauma at all was a minor medical miracle, but now it was up to Blondeel to head the effort. The first step was finding a suitable donor as, despite all of the advances in 3D bioprinting, it is still not possible to 3D print a human face for transplant. Once a donor was encountered, the next step in preparing was to create a complete 3D model of the patient’s face and skull using 3D scanning and modeling technology. A second model of a similar, but undamaged, skull was also made to serve as a reference point to define the bone and soft tissue that would need to be harvested for the transplant.

The team also 3D printed a variety of anatomical models in order to help them plan the best way to approach the surgery itself. This is becoming an increasingly common tool utilized by surgical teams as it allows them to preview the procedure in a way that digital models don’t. As a result, the procedures take less time and there are fewer surprises during the surgery, which helps the intervention to be undertaken with greater success.

The surgical procedure required two sets of surgeons to be working in tandem, one working to prepare the man to receive the transplant and the other working to remove the necessary bone and facial tissue from the donor. Once the face had been removed from the donor, the bone was fixed into place with plates and screws, the blood vessels and nerves were connected, and as a final step the soft tissue was sutured together.

In the months following the surgery, the recovery of the patient has met every marker for success. As a tribute to the man who had generously decided to be a donor before his death, the team at Materialise also created a death mask from a scan performed before the surgery to be presented to his family, an application for which 3D scanning and 3D printing are well suited.

While we are a long way from face transplants becoming a routine procedure, technological expertise, such as that provided by Materialise, is moving the operation away from the fantastic and into the realm of the possible and aiding in the achievement of successful outcomes in complicated procedures such as this one. 3D technologies are enabling face transplants to be conducted around the world, ensuring accuracy in complex cases and reshaping medical possibilities.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: Materialise]

 

 

Share this Article


Recent News

3D Printing News Briefs, March 25, 2023: Software Launch, Dental Ceramics, & More

Jabil & KAV Sports Collaborate on Custom Material for 3D Printed Bike Helmets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Louisville Slugger Knocks it out of the Park Designing Bats with Formlabs 3D Printers

In 2022, historical bat brand Louisville Slugger revealed a new strategy to optimize its product, combining digital simulation for the design process and 3D motion capture technology for comprehensive baseball...

3D Printing News Briefs, March 22, 2023: Carbon Sequestration, 3D Printed Bird Drones, & More

In 3D Printing News Briefs today, Meltio is expanding its worldwide partner network, and 3D Systems introduced its VSP Connect portal. Oregon State University and Sandia National Laboratories received a...

3D Printing News Briefs, March 18, 2022: Amphibian Aerospace, Olympics, & More

Multistation signed a distribution agreement with BigRep, and JPB Système reports a major milestone, while Nupress will deliver amphibian aerospace applications with SPEE3D technology. HP introduced its new Single Cell...

3D Printing News Briefs, March 15, 2023: Software, Carbon Fiber Bikes, & More

In today’s 3D Printing News Briefs, Velo3D has released the latest version of its Flow software, and Horizon is opening up more micro additive manufacturing applications with a coating that...