NASA: Bioprinting in Space May Lead to Breakthroughs in Cancer Research

Share this Article

NASA has been using 3D printing for decades now, and few organizations can top their experience or resourcefulness with the technology. NASA tends to make big news with 3D printing, most of it centered around rockets and Mars, as well as inspiring student challenges. While the organization has also been 3D printing in space on the International Space Station since the first 3D printer in space arrived in 2014, and continuing to develop new technologies to do so, many may be surprised to hear that they are now investigating the uses of bioprinting in space, with their team at the International Space Station working to improve on their technique, beginning with handling. As usual, the lack of gravity lends an extra challenge to research that is already complex.

The current goals with bioprinting at the Space Station are to:

  • Reduce loss of cells from cultures
  • Create cultures in specific shapes
  • Improve retrieval of cells for use in analysis

“In the microgravity environment, cells exhibit spatially unrestricted growth and assemble into complex 3D aggregates, in contrast to typical growth in monolayer (2D) cultures as occurs on Earth. For over two decades, investigations conducted in space and on Earth have shown that 3D culture supports the generation of tissue-like characteristics in vitro that are more biologically representative of native in vivo-like cell growth and function,” state the researchers.

“Because cell culture in microgravity can be technically and mechanically challenging, the application of magnetic tools to assist physical manipulation of the growing cultures could provide advantages to enhance experimental outcomes and facilitate the development of throughput systems for conducting high volume cell culture work in space.”

Each BioCell has six wells to accommodate six different test samples. [Photo: BioServe]

Currently, researchers are adding gold atoms to add strength to the cultures in space. Consequently, they can then be handled with magnets, allowing for successful bioprinting.

“This technology may enable us to handle cells in space in a way currently not possible,” said project manager Luis Zea, research associate at BioServe Space Technologies, University of Colorado, Boulder. “We can use it to manipulate cells and make sure they are where we want them. For example, when adding fresh medium or a fixative to a culture, there is a good chance cells will move, which affects the parameters of the experiment. After adding these magnetic particles, we can use magnets to keep the cells in one place.”

Luis Zea at work [Photo: University of Colorado at Boulder]

Research also shows that the gold will not interfere with the cells. In space, researchers can bioprint and then make comparisons with conventional research on Earth. Ultimately, they will be able to improve their bioprinting work in space.

“On Earth, you put cells on a biofilm medium and they grow on its surface,” said Zea. “That doesn’t happen in space, because there isn’t enough gravity to hold them to that surface. So currently, we start growing cells on a medium on the ground, launch to space, and then start the experiment. With the magnetic particles, we can start growing cell cultures in space the same as on Earth.”

More importantly, Zea sees great potential for this work in cancer research, as they might be able to use the bioprinting cultures to study and target different types of cancer. Performing this work in the space arena could even lower development expenses.

“This investigation tests a new technology and other scientists can then identify how it may apply to their field of research,” Zea said.

The space station already possesses hardware for research. Nano3D Biosciences created the magnetic nanoparticle technology and was able to make it ready for space with the support of the Center for Advancement of Science in Space (CASIS). Discuss in the NASA forum at 3DPB.com.

[Sources: NASA; Controlled Environments]

 

Share this Article


Recent News

3D Printing Porous Ceramics with Bioinspired Materials for More Accurate Molds, Templates

Some U.S. Patent Law Basics for 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

SmarTech Patent Reports Provide New Insights into Corporate Strengths and Strategies

SmarTech Analysis’ range of reports on patents in the Additive Manufacturing (AM) sector provides unique tools for better understanding the strengths and weaknesses of individual firms and going well beyond...

3D Printed Visual Aids for the Courtroom 

I’ve been following the developments in 3D printing for the courts closely for years. We’ve seen how 3D scanners and VR can be used in the courts, how Canadian company...

Thesis Student Creates Business Case for Desktop 3D Printing E-Cigarette Cases

Thesis student Calvin Smith, at Minnesota State University, brings up a topic most 3D printing enthusiasts and users should be interested in as he explores the limits—and endless possibilities— of...

3D Printing News Briefs: March 23, 2019

We’ve got plenty of business news to share in this week’s 3D Printing News Briefs, but first we’ll start off with something fun – the winners have been announced for...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!