NASA Fires Up 3D Printed Rocket Engine for Latest Series of Tests

RAPID

Share this Article

combustionWhile many people may be ringing in the New Year with some sort of (hopefully legal) fireworks this coming weekend, no one’s display will beat that of NASA, which is saying farewell to 2016 with an appropriately fiery blast. We’ve been following the agency’s endeavor to build a completely 3D printed rocket engine for quite a while now, and our excitement is re-ignited every time NASA announces another successful test of a newly completed component.

The new combustion chamber NASA tested out recently wasn’t 3D printed (yet), but it was a big step forward from the chamber they had been using for previous tests. Those tests were carried out using an ablative combustion chamber, which erodes when burning, changing internal pressures and only allowing for a ten-second firing time. The newly designed combustion chamber used in the most recent tests was a regeneratively cooled chamber, capable of being fired for much longer.

In the latest tests, the engine was fired for 30 seconds (although it could have gone longer), allowing the engineers at NASA’s Marshall Space Flight Center to obtain, for the first time, information about how the engine’s 3D printed components perform together during a longer-duration burn. With the exception of the new combustion chamber, all of the major components in the test engine were 3D printed, including the fuel injector, fuel turbopump, valves, and more.

“A system is not just a sum of parts put together. It’s a product of the interaction of the parts. What we’re trying to do is understand and manage those interactions,” said Nick Case, lead system analyst for the project. “At the same time, we must understand the performance of the individual 3-D printed pieces. That’s what this test allowed us to do.”

ceb_8290

Andrew Hanks (L) and Graham Nelson examine the newest combustion chamber for NASA’s 3D printed rocket demonstrator engine. [Image: NASA/MSFC/Charles Beason]

The engine they’re working with right now is what’s known as a breadboard engine: the components are connected as they would be during an actual flight, but with an open design that allows the engineers to clearly see each component and to make changes if necessary. They’re hoping to test a breadboard engine next year that’s almost 100 percent 3D printed.

Testing the new combustion chamber with the 3D printed components was crucial because the chamber is where fuel turns to hot gas and provides thrust – 35,000 pounds of it, which is what the engine is designed to produce. In the most recent set of tests, liquid oxygen and liquid hydrogen entered the chamber at around 400° below zero Fahrenheit and exited it at around 6,000°.

“With our new chamber and the longer firings, we are able to create a test environment that is much closer to our design point for this project,” said test lead Andrew Hanks.

firingThe next step, according to NASA, will be the addition of a 3D printed oxidizer turbopump, created in collaboration with the NASA Space Technology Mission Directorate’s Game Changing Development program, which is also funding the development of a 3D printed combustion chamber. The engineering team hopes to be able to test the 3D printed chamber in the summer of 2017.

While there are no plans to send the demonstrator engine into space, the project will, once completed, show that 3D printed rocket engine components are viable and even preferable to traditionally manufactured ones, and will pave the way for future engines and parts to be fabricated using 3D printing. In addition to developing the next set of 3D printed parts, the engineering team is also working on testing the engine with different propellant combinations, including oxygen and methane. Those two gases are being considered as fuel for deep-space vehicles and landers, as it may be possible to produce them on Mars. You can see a video of the latest test firing below:

Discuss in the NASA forum at 3DPB.com.

[Source: NASA]

 

Share this Article


Recent News

3D Printing Financials: AML3D and Titomic Bet Big on U.S. Growth

Sintavia Buys AMCM Metal 3D Printer with nLight Lasers



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Nikon’s AM Expansion from California to Japan and Beyond: CEO Hamid Zarringhalam Weighs in

As we recently argued in a 3DPrint.com PRO article, Nikon Advanced Manufacturing has quickly gone from a prominent player in the metal additive manufacturing (AM) sector to become one of,...

The State of the Talent and Job Market in AM: 2025 Outlook

The additive manufacturing industry has seen significant shifts in recent years, with 2024 marking a critical turning point. Economic pressures, evolving hiring trends, and an increasing talent shortage at the...

SWISSto12 to 3D Print Antennas for SES’s Medium Earth Orbit Satellite Constellation

SWISSto12 has made a remarkable journey in satellite manufacturing. The company now produces its own HummingSat, as well as 3D-printed filters, waveguides, and other RF components. Recently, it was selected...

3DPOD 243: Volumetric 3D Printing with Xolo CCO, Stephan Kuehr

Stephan Kuehr began his career at 3YOURMIND before joining the volumetric 3D printing firm Xolo. In this episode of the 3DPOD, we discuss Xolo, its technology, volumetric 3D printing, bioprinting,...