ISS Astronauts 3D Print Radiation Shields for Experiments Aboard the Bigelow Expandable Activity Module
Last April, the eighth SpaceX resupply mission carried the Bigelow Expandable Activity Module, or BEAM, to the International Space Station. Las Vegas-based Bigelow Aerospace made the experimental module, which was compact during travel but filled with air and expanded to roughly 13 feet long and 10.5 feet in diameter once it docked with the ISS, to provide a habitable area for astronauts to live and work in space. To coincide with the BEAM’s launch, NASA and ASME held the Think Outside the Box Challenge last year, and challenged K-12 students to design an object that can be 3D printed on the Additive Manufacturing Facility aboard the ISS and expand into a useful item for an astronaut.
The BEAM, which was launched and attached to the ISS through a partnership between Bigelow Aerospace and NASA’s Advanced Exploration Systems Division (AES), is now halfway through its planned two-year demo on the ISS; this partnership supports NASA’s objective to develop a working human habitat for deep space missions while also growing commercial capabilities for non-government applications.
The BEAM is offering up a lot of useful data on expandable habitats, and shows that soft materials are able to perform just as well in space as rigid ones for habitation volumes. On the ground, NASA and Bigelow are working with the ISS astronauts to monitor the characteristics that relate to the BEAM’s ability to protect humans from the environment of space, such as thermal stability, structural integrity, and the module’s resistance to radiation, microbial growth, and space debris.

NASA Astronaut Kate Rubins conducts tests and replaces parts inside the BEAM on Sept. 5, 2016. [Image: NASA]
The hemispherical white shield was 3D printed by the station crew on the ISS zero-gravity 3D printer. Sometime in the next few months, the crew will 3D print two successively thicker radiation shields, one measuring at 3.3 mm and the other at 10 mm, to replace the existing one. Studying the difference in measurements between the REM with the 3D printed shield and the one without a shield will help researchers “resolve the energy spectra of the trapped radiation particles,” according to NASA.

Astronauts aboard the ISS 3D printed a shield to cover one of two Radiation Environment Monitors inside the BEAM. The shield, the white hemispherical shape at the center of the photograph, is shown inside the BEAM module. [Image: NASA]
All of the technology demonstrations taking place aboard the BEAM are helping NASA learn valuable information about expandable space habitat technology in low-Earth orbit; this information could be helpful in planning future human exploration missions. Discuss in the BEAM forum at 3DPB.com.
[Source: NASA]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
3D Printing News Briefs, April 12, 2025: RAPID Roundup
The news from last week’s RAPID+TCT in Detroit just keeps on coming! That’s why today’s 3D Printing News Briefs is another RAPID Roundup of more exciting announcements from the trade...
What I Would Do If I Were Josef Průša, Part 2: Right on the Nose
How can you beat Garry Kasparov? With a baseball bat. If you ask yourself the question, “How can I beat Garry Kasparov,” and silently add the fragment “at chess” in...
What I Would Do If I Were Josef Průša, Part 1: Shark Cosplay
If I were Josef Průša, I’d probably gloat and be insufferable. Honestly, though, it’s a question that has vexed me. Josef asked on LinkedIn whether people would like to see...
Flashforge AD5X Review: Multicolor TPU 3D Printing Made Simple
Disclosure:The AD5X was provided to me by Flashforge free of charge for the purpose of this review. I have not received any additional compensation. All opinions expressed are my own,...