ISS Astronauts 3D Print Radiation Shields for Experiments Aboard the Bigelow Expandable Activity Module
Last April, the eighth SpaceX resupply mission carried the Bigelow Expandable Activity Module, or BEAM, to the International Space Station. Las Vegas-based Bigelow Aerospace made the experimental module, which was compact during travel but filled with air and expanded to roughly 13 feet long and 10.5 feet in diameter once it docked with the ISS, to provide a habitable area for astronauts to live and work in space. To coincide with the BEAM’s launch, NASA and ASME held the Think Outside the Box Challenge last year, and challenged K-12 students to design an object that can be 3D printed on the Additive Manufacturing Facility aboard the ISS and expand into a useful item for an astronaut.
The BEAM, which was launched and attached to the ISS through a partnership between Bigelow Aerospace and NASA’s Advanced Exploration Systems Division (AES), is now halfway through its planned two-year demo on the ISS; this partnership supports NASA’s objective to develop a working human habitat for deep space missions while also growing commercial capabilities for non-government applications.
The BEAM is offering up a lot of useful data on expandable habitats, and shows that soft materials are able to perform just as well in space as rigid ones for habitation volumes. On the ground, NASA and Bigelow are working with the ISS astronauts to monitor the characteristics that relate to the BEAM’s ability to protect humans from the environment of space, such as thermal stability, structural integrity, and the module’s resistance to radiation, microbial growth, and space debris.

NASA Astronaut Kate Rubins conducts tests and replaces parts inside the BEAM on Sept. 5, 2016. [Image: NASA]
The hemispherical white shield was 3D printed by the station crew on the ISS zero-gravity 3D printer. Sometime in the next few months, the crew will 3D print two successively thicker radiation shields, one measuring at 3.3 mm and the other at 10 mm, to replace the existing one. Studying the difference in measurements between the REM with the 3D printed shield and the one without a shield will help researchers “resolve the energy spectra of the trapped radiation particles,” according to NASA.

Astronauts aboard the ISS 3D printed a shield to cover one of two Radiation Environment Monitors inside the BEAM. The shield, the white hemispherical shape at the center of the photograph, is shown inside the BEAM module. [Image: NASA]
All of the technology demonstrations taking place aboard the BEAM are helping NASA learn valuable information about expandable space habitat technology in low-Earth orbit; this information could be helpful in planning future human exploration missions. Discuss in the BEAM forum at 3DPB.com.
[Source: NASA]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD Episode 176: 3D Printing in Singapore with Chaw Sing Ho, CEO of NAMIC
As CEO, Chaw Sing Ho spearheads National Additive Manufacturing Innovation Cluster (NAMIC), Singapore’s national initiative for 3D printing. In our in-depth conversation with him on the 3DPOD, we explore the...
Xometry Taps Google Cloud for AI Boost and Sees Q3 Growth
Xometry‘s (Nasdaq: XMTR) announcement of its strategic partnership with Google Cloud, a key division of Alphabet, aims to accelerate the digitization of manufacturing globally, marking an essential step in the...
Nikon Backs Ai Build’s Smart 3D Printing Software in $8.5 Million Series A
When there’s a gold rush, the best bet is to invest in picks and shovels. When it comes to the additive manufacturing (AM) industry, that means backing the software that’s...
Amplifying Additive Manufacturing with Artificial Intelligence
Additive manufacturing (AM) continues to evolve in the dynamic manufacturing landscape, and integrating Artificial Intelligence (AI) has proven to be transformative. Both have independently made waves, redefining what’s possible in...