ISS Astronauts 3D Print Radiation Shields for Experiments Aboard the Bigelow Expandable Activity Module

Share this Article

Last April, the eighth SpaceX resupply mission carried the Bigelow Expandable Activity Module, or BEAM, to the International Space Station. Las Vegas-based Bigelow Aerospace made the experimental module, which was compact during travel but filled with air and expanded to roughly 13 feet long and 10.5 feet in diameter once it docked with the ISS, to provide a habitable area for astronauts to live and work in space. To coincide with the BEAM’s launch, NASA and ASME held the Think Outside the Box Challenge last year, and challenged K-12 students to design an object that can be 3D printed on the Additive Manufacturing Facility aboard the ISS and expand into a useful item for an astronaut.


The BEAM, which was launched and attached to the ISS through a partnership between Bigelow Aerospace and NASA’s Advanced Exploration Systems Division (AES), is now halfway through its planned two-year demo on the ISS; this partnership supports NASA’s objective to develop a working human habitat for deep space missions while also growing commercial capabilities for non-government applications.

The BEAM is offering up a lot of useful data on expandable habitats, and shows that soft materials are able to perform just as well in space as rigid ones for habitation volumes. On the ground, NASA and Bigelow are working with the ISS astronauts to monitor the characteristics that relate to the BEAM’s ability to protect humans from the environment of space, such as thermal stability, structural integrity, and the module’s resistance to radiation, microbial growth, and space debris.

NASA Astronaut Kate Rubins conducts tests and replaces parts inside the BEAM on Sept. 5, 2016. [Image: NASA]

Researchers at NASA’s Langley Research Center analyze the data from internal sensors that monitor and locate any external impacts caused by debris, and it seems that the BEAM is performing well, successfully preventing any penetration from orbital debris with its outer protective layers. Now, the focus will move to measuring the radiation dosage inside the BEAM. Thanks to two active Radiation Environment Monitors (REM) inside the BEAM, NASA researchers at the Johnson Space Center can take real-time measurements of Galactic Cosmic Radiation (GCR) levels.

The Bigelow Expandable Activity Module (BEAM), attached to the ISS. [Image: Bigelow Aerospace]

While the Earth’s magnetosphere offers the ISS, and the BEAM, a lot of protection from radiation, the researchers are continuing to analyze the radiation to see if the module’s shielding properties can be applied to long-term missions, as future missions in deep space will be more exposed to radiation. In April, a 1.1 mm thick shield was installed onto one of the BEAM’s REM sensors for a multi-month BEAM radiation experiment.

The hemispherical white shield was 3D printed by the station crew on the ISS zero-gravity 3D printer. Sometime in the next few months, the crew will 3D print two successively thicker radiation shields, one measuring at 3.3 mm and the other at 10 mm, to replace the existing one. Studying the difference in measurements between the REM with the 3D printed shield and the one without a shield will help researchers “resolve the energy spectra of the trapped radiation particles,” according to NASA.

Astronauts aboard the ISS 3D printed a shield to cover one of two Radiation Environment Monitors inside the BEAM. The shield, the white hemispherical shape at the center of the photograph, is shown inside the BEAM module. [Image: NASA]

Since the BEAM was expanded in May of 2016, ISS crew members have entered it nine times, to collect microbial air and surface samples, change out passive radiation badges, and work on the REM shielding experiment. You can read more about the 3D printed radiation shield installation, and some of the other work taking place aboard the ISS, in last month’s NASA Space Station On-Orbit Status update.

All of the technology demonstrations taking place aboard the BEAM are helping NASA learn valuable information about expandable space habitat technology in low-Earth orbit; this information could be helpful in planning future human exploration missions. Discuss in the BEAM forum at 3DPB.com.

[Source: NASA]

 

Share this Article


Recent News

DOE Awards Iowa State $1M to Research 3D Printed Tungsten for Nuclear Energy

ELSTM Introduces 3D Printed Sneakers, $250 a Pair



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Amnovis 3D Prints 50,000 Implants without Heat Treatment

Amnovis has announced that it has produced 50,000 implants using its proprietary heat-treatment-free 3D printing process. These implants have been used in the spine, orthopedics, and CMF markets since 2021....

3D Printing News Briefs, September 12, 2024: Scholarships, Pool Maintenance, Shoes, & More

In 3D Printing News Briefs today, four graduate students received $10,000 scholarships from ASTM International, and 3DPRINTUK announced the first commercial launch of the Stratasys SAF printer in the UK....

HILOS Launches Studio OS for AI-Driven 3D Printed Shoe Design

At Milan Design Week, footwear 3D printing startup HILOS has unveiled its latest development, Studio OS. Introduced at the historical Villa Bagatti Valsecchi, the platform is meant to redefine how...

Further Understanding of 3D Printing Design at ADDITIV Design World

ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...