Exone end to end binder jetting service

University of Central Florida Professor Works with NASA to Further Develop 3D Printing Plans for Mars

INTAMSYS industrial 3d printing

Share this Article

mars-mission-528x396A new space race has emerged as government agencies and private companies around the world strive to be the first to land humans on Mars. While each of these institutions may differ in the details of their plans to reach the Red Planet, one thing that pretty much all of them agree on is the fact that 3D printing is going to play a large role, from the fabrication of the spacecraft to the printing of supplies during the journey to the building of habitable structures upon arrival.

The idea of 3D printing human habitats on Mars makes most people do a double take, but it’s key if we want to spend any significant amount of time there. It’s not feasible to carry construction materials into space, so any structures for living and working will have to be built with the resources that can be found on Mars – i.e., whatever’s in the planet’s soil.

Several ideas have been pitched for technologies that will enable the 3D printing of Mars’ regolith, which consists of soil, dust, rocks, and whatever else is scattered across the planet’s surface. NASA’s citizen science challenges have yielded viable possibilities, and the agency continues to enlist the help of experts such as Dr. Sudipta Seal of the University of Central Florida. Dr. Seal is the interim chair of the university’s Materials Science and Engineering program and the director of the Advanced Materials Processing & Analysis Center and NanoScience Technology Center. 

2014-seal

Dr. Sudipta Seal

Dr. Seal is working with NASA to research a process called Molten Regolith Electrolysis, which is similar to the technology used to refine metal ores on Earth. The idea is that astronauts would feed Martian soil into a chamber, which would then be heated to nearly 3,000°F, producing oxygen and molten metals via electrolysis. Those metals would then be used to 3D print tools, electronics, and components for ships and buildings.

“It’s essentially using additive-manufacturing techniques to make constructible blocks,” explains Dr. Seal, who will also help NASA determine which form the metals should take to be most suitable for commercial 3D printers. “UCF is collaborating with NASA to understand the science behind it.”

NASA intern Kevin Grossman, a graduate from Dr. Seal’s research group, is also working on the project, which is being funded by a NASA grant. He hopes to see additional projects develop from the collaboration between NASA’s Kennedy Space Center and UCF. The two institutions have been working together for a long time, and Dr. Seal isn’t the only faculty member currently working on the development of construction methods that utilize in situ materials from Mars and elsewhere in space.

lavahive

LavaHive was one of the winning design concepts submitted to NASA’s 3D Printed Habitat Challenge.

Dr. Philip Metzger of UCF’s Florida Space Institute is currently working with Deep Space Industries to develop a way to make Martian soil pliable enough for 3D printing; he and Dan Britt are also working with the company to simulate asteroid regolith that will assist in the development of hardware for asteroid mining. NASA, meanwhile, is sticking to their goal of sending people to Mars in the 2030s, but there’s a lot of work that has to be done before that can feasibly happen. The fact that we’re even approaching the day that humans can live and build on Mars, however, is astonishing, and Dr. Seal is thrilled to be a part of the work.

“Before you go to Mars, you have to plan it out,” he said. “I think this is extremely exciting.”

Discuss in the NASA UCF forum at 3DPB.com.

Share this Article


Recent News

3D Systems Finalizes Sale of On-Demand Business, Will Operate as Quickparts

3D Printing Tunneling Machine Takes Second in Elon Musk Competition



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Launcher’s New Orbital Transfer Vehicle to Rideshare on SpaceX Falcon 9 in 2022

Launcher’s new orbit transfer vehicle (OTV) will debut on a SpaceX Falcon 9 rideshare for its inaugural flight to Sun-synchronous orbit (SSO) in October 2022. Known as Launcher Orbiter, the...

Featured

SpaceX Successes Drive off-Earth Innovation, So Do Its Failures

After a highly anticipated test launch, SpaceX‘s Starship SN11 prototype finally lifted off for a planned test flight. Climbing up from out of the cloud deck at the company’s South...

Featured

From Magnets to Harpoons: How to Catch Space Debris

The world’s first commercial test mission to locate and remove space debris has finally launched to space. On March 22, 2021, Astroscale’s End-of-Life Services demonstration (ELSA-d) mission took off from...

Featured

Relativity Space Preparing for Next Year’s Rocket Launch with New VP and Verified 3D Printing Tech

In the last few years, there has been excitement for the new race to the moon. But as deadlines for rocket launches and crewed missions get closer, space companies begin...


Shop

View our broad assortment of in house and third party products.