AM Investment Strategies
AMS Spring 2023

Hypersonics Research Takes Flight with VELO3D Metal 3D Printers at Purdue


Share this Article

Supersonic” is clearly one of the biggest buzzwords in the aerospace sector these days. Supersonic air travel is that which occurs at speeds between just above the sound barrier (Mach 1), up to about five times that (Mach 5). Militaries around the world (as well as the largest commercial airlines) seem to have developed amongst themselves a rough consensus that the supersonic range is the target threshold for the next generation of aircraft performance.

At the same time, in a most striking example of techno-optimists’ constant attempts to leapfrog over themselves, the hypersonic range has also been getting increasing amounts of attention lately. Defined as speeds above Mach 5 (around 3,500 mph at sea-level), hypersonic “aircraft” (missiles) were in the news earlier this year, when the Pentagon announced that the US military had tested its “Hypersonic Air-breathing Weapon Concept” (HAWC) in mid-March.

In turn, it was inevitable that research programs concerned with high-speed combustion systems — like the Slabaugh Group, at Purdue University’s Zucrow Labs — would continue ramping up their inquiries into what happens in hypersonic environments. And, as they do so, the researchers at such institutions turn more and more to solutions provided by metal additive manufacturing (AM) firms, like VELO3D.

In a press release, Carson Slabaugh, head of the Slabaugh Group research team at Zucrow Laboratories, explained, “Effectively, if you want to test a hypersonic vehicle on the ground you build a rocket engine with a big converging-diverging nozzle and a supersonic plume of extremely hot gas; the ‘fireball’ that the vehicle is flying through. …With VELO3D, we’re designing the injectors for that combustor to produce very specific turbulent flow fields that mix fuel at a certain rate and allow us to stabilize a very powerful flame in a very compact volume. This creates the conditions for all the things we’re going to test downstream.”

Basically, the team at Purdue used VELO3D’s Sapphire machine to build a rocket engine (“a very large 3D printed burner,” according to Slabaugh) that was bolted into the ground with concrete. In practical terms, AM was so integral to this process primarily due to the researchers’ need to test different fuel injectors in a wide variety of complex shapes.

Aside from the increased difficulty or even impossibility of producing the same shapes with conventional manufacturing, AM allowed the Slabaugh Group to print a large number of slightly different designs, as quickly as possible. In addition to VELO3D’s Flow Software system, the team praised the minimal post-processing involved as a major advantage to the company’s hardware. Resultantly, the researchers were able to select the best design for “full-scale hypersonic test experiment capability” in a matter of only about 2 weeks. The Slabaugh Group plans to begin those tests this fall.

VELO3D’s indispensability to this project, in particular, perfectly exemplifies the current trajectory that the company is on. Purdue has been a tone-setter for R&D in the broader field, and that state-of-affairs seems likely to continue. This of course doesn’t on its own mean that VELO will become a leader in AM applications for hypersonic technologies, but it certainly doesn’t hurt.

Images courtesy of Purdue University

Share this Article

Recent News

Ye Debuts 3D Printed Boot Powered by Zellerfeld for Paris Fashion Week

Evonik Reduces CO2 in its 3D Printing Materials


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

3D Printing News Briefs, September 29, 2022: Crowdfunding a 3D Printed House & More

We’re kicking things off with business in today’s 3D Printing News Briefs, as a Dallas construction startup is looking to raise $2 million to 3D print homes. LÖMI joined the...

3D Printing Webinar and Event Roundup: September 11, 2022

We’ve got several in-person events to tell you about in today’s roundup, as SMASIS, IMTS, and more will be held this week. Webinars will focus on topics including post-processing, using...

Are 3D Printed Houses as Sustainable as They Seem?

Is additive construction (AC) sustainable? Many companies in the sector argue that it is for numerous reasons. They assert that it reduces waste because builders can print only what they...

3D Printing News Briefs, August 13, 2022: Natural Fibers, Robotic Gripper, & More

We’re starting with an event in today’s 3D Printing News Briefs, as the New Collar Network is hosting a gathering of fab labs in New Mexico next month. Moving on...