Carbon Design Engine Generates Conformal Lattices for 3D Printing

Share this Article

On March 2, Carbon released its new Carbon Design Engine, with a lattice design generator that can automate the creation of conformal, single-zone lattices. Carbon has been working with its printing partners to help it develop conformal latticed products for years, but now their internal tool is available for public use.

A conformal lattice is one in which the “mesh” of the lattice is generated relative to the object’s shape and surface, rather than independently of it. In simple terms, the lattice design is shaped around the object, rather than being “pasted onto” the object.

“Designing with conformal lattices means no open joints or hanging nodes,” says Hardik Kabaria, Carbon’s Director of Software Engineering. “Hanging nodes can create a stress concentration fracture, so if you have them in your work, it’s not a good design.”

He also compared the texture of an object with open joints to “a bed of soft nails.”

A conformal lattice vs. a “regular”, uniform lattice. Conformal lattices lower the likelihood of stress fractures (Image via Nguyen, Park and Rosen/ International Journal of Precision Engineering and Manufacturing).


3D printing has made it easier to print with these optimized lattices, but many traditional CAD design programs don’t have the tool palette to support conformal lattice design. Many designers have to resort to manual intervention, or “gaming” their programs into making conformal lattices. 

According to Carbon co-founder Phil DeSimone, they were inspired by their much-publicized partnership with Adidas to develop the Futurecraft 4D cushioning sole.

“Watching them go through that struggle with the design tools available was painful,” he says. “We wanted to create a tool that would help companies develop their products from beginning to end, and a lot of that is ideation, before anything gets printed.”

Carbon created the Carbon Design Engine (CDE), initially to collaborate on design projects with customers. The CDE is a cloud-based application capable of creating five different kinds of conformal lattices. It takes approximately 18 seconds to generate a conformal lattice for an object design, and can reduce both material use and print time by over 50 percent. It can also predict how the lattice will perform before it’s even generated, meaning faster iteration. CDE has been in beta since January, but as of March 2nd it’s available to anybody with a Carbon printer subscription. 

The Carbon Design Engine is able to anticipate the performance of a lattice design before it is generated. In this instance, parameters are suggested to produce a model to lower the weight of the part. Image courtesy of Carbon.

The beta and the long period of internal use means that there have already been a significant number of use cases.

“All of the [Carbon] customers you’ve seen make lattices with Carbon, they’ve been using it,” DeSimone says.

Their press release points out one particularly timely use case: the design and creation of COVID-19 testing swabs. In March 2020, nasopharyngeal swabs became a hot commodity at the same time that disruptions in the supply chain made them hard to get. The Carbon team, lead by Kabaria, designed their first latticed swab in less than two hours. After that, the swab was prototyped, optimized, FDA-approved and in doctors’ hands within 20 days, an unheard-of timeline for most medical devices.

Nineteen iterations on the Resolution Medical latticed swab, as the team used the Carbon Design Engine to  develop a design that was just as effective as a traditional nasal swab (Image via Carbon).

The release also mentions that their engine was used for Riddell’s Super Tacks X football helmet, and Specialized’s injury-reducing Specialized S-Works Power bike saddle. And while most of this work is is 3D printed using Carbon’s Digital Light Synthesis (DLS) technology, the team is excited to see where their tools could be used in other areas.

“Creating lightweight parts using metal could be more valuable even than our work in DLS,” DeSimone says. “For me, it’s about more than DLS. It’s about the industry as a whole.”

Ultimately, the team hopes that their tool will make it faster and easier to design for 3D printing, and increase the number of products on the market.

“There’s a lot of talk about additive manufacturing, but not a lot of products,” DeSimone says. “Carbon is one of the few tools on the market where you can just go into a store and buy a product made with it. Our goal is that we want to see more products being brought forward. This is not just about helping our customers design better, it’s about helping the industry as a whole.”

Share this Article


Recent News

Lithoz Introduces Entry-Level Ceramics 3D Printer CeraFab Lab L30

Ti-42Nb: A New Alloy for 3D Printed Orthopedics and Dental Implants



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Virtual Event Roundup: April 10, 2021

We’ve got another packed week of webinars and virtual events for you, starting with Hannover Messe 2021 on Monday. What else is coming up this week: ASTM CoE’s personnel certificate...

LimaCorporate and HSS Open First Hospital-Based Facility for 3D Printed Implants

In 2019, global orthopedics manufacturing company LimaCorporate S.p.A. and the Hospital for Special Surgery (HSS), the top-ranked orthopedic hospital in the United States, announced that they were partnering to establish the...

Featured

Desktop Metal Launches New Health 3D Printing Division

The news just doesn’t stop when it comes to Desktop Metal (NYSE:DM), and the latest headline from the 3D printing unicorn-turned-publicly-traded company is the launch of Desktop Health, a new...

Huaxiang Uses Farsoon to 3D Print Personalized Porous Spinal Cages

Even though China 3D prints thousands of orthopedic implants, mainly in titanium, personalized orthopedics and interbody spinal fusion devices made with 3D printing are still relatively new there and elsewhere....


Shop

View our broad assortment of in house and third party products.