In ‘Radiotherapy-Compatible Robotic System for Multi-Landmark Positioning in Head and Neck Cancer Treatments,’ authors Mark Ostyn, Siqiu Wang, Yun-Soung Kim, Siyong Kim, and Woon-Hong Yeo discuss the challenges of dealing with spine flexibility in radiation therapy and explore the accompaniment of robotics to help improve positioning.
To prevent neck flexibility resulting in problems during therapy, medical professionals often employ passive immobilization masks to prevent motion and encourage successful positioning. The authors also point out, however, that studies over time have shown that such masks still have a margin of error of 3–5 mm between distant landmarks along the spine of the neck.
“Recent reports show that an accurate positioning in head and neck therapy can be achieved by independent positioning of the head from the rest of the body,” state the researchers. “However, these mechanical systems have not yet been introduced into regular clinical practice.”
No other systems have been radiotherapy-compatible so far, leaving the authors to take matters into their own hands and develop a robotic system which is suitable for radiotherapy.
“In this new system, all radiotherapy-incompatible components are arranged far outside of the radiation field, placed 40 cm inferior to radiation isocenter with a novel, plastic gearbox that reduces linear accelerator gantry clearance issues,” stated the researchers. “As a result of transitioning from direct to indirect power transmission from stepper motors to end effectors, a mostly-plastic secondary position feedback is introduced to aid in navigation.”
The system is validated with attenuation measurement, as well as radiographic imaging. In designing the robotic system, the researchers were determined to make structures as small as possible, but still able to offer the necessary range of motion. The researchers put the metal motors in between the patient and in this case for the study, the couch top.
They 3D printed almost all the components, to include:
- Gear box
- End effector assembly
- Enclosure
- Mounting frame
Two 3D printers are capable of making such parts in a superior manner, according to the researchers: the Formlabs Form 2 printer and the Objet Eden 260VS. Materials used included ABS, as well as PLA when using other 3D printers.
“In addition, the top plate of the head/neck controller that needs an extra high strength is fabricated by machining a carbon-fiber-reinforced plastic, which holds a patient’s head,” stated the researchers.
The researchers included 15 trails, with a variety of displacements, from 1.1 to 5.2mm.
“This presented system is capable of positioning a patient’s head with submillimeter accuracy in clinically acceptable spatial constraints. Calculated attenuation of materials in the system have lower HU values than a reference material (bone tissue), which is validated by a set of radiographic images with no visible artifacts,” concluded the researchers.
“The result of positioning accuracy with a skeletal phantom determines the device’s accuracy as 0.7 ± 0.3 mm. In addition, CBCT imaging and post correction study validates the system’s functionality for aligning individual regions when the head and body are individually positioned. Future work will focus on the radiotherapy application for patients with head and neck cancer.”
3D printing and robotics go hand in hand quite literally in many instances, from ultra-programmable systems to sensor technology, and even manufacturing for industries such as furniture design. What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Radiotherapy-Compatible Robotic System for Multi-Landmark Positioning in Head and Neck Cancer Treatments’]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: September 14, 2024
In this week’s roundup, Divide By Zero Technologies is having a launch event for its new 3D printer tomorrow. Stratasys continues its tour of North America, as well as its...
3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners
Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...