BASF and CTIBiotech Develop 3D Bioprinted Human Reconstructed Skin

IMTS

Share this Article

3D reconstructed skin and epidermal models are a valuable tool in pharmaceutical and cosmetics testing, as well as for in vitro studies. 3D printing has shifted the paradigm in studies of experimental skin biology, as researchers moved from the 2D monocultures to growing skin within a 3D extracellular matrix. Companies like BASF Care Creations and Cell Therapy Research Institute CTIBiotech came together a few years ago to collaborate on new methods for bioprinting, working together to advance further in skincare applications. Now, they have announced the development of the first 3D bioprinted human reconstructed skin including immune macrophages. Macrophages are important cells of the immune system that are formed in response to an infection or accumulating damaged or dead cells. If these macrophages provide the first line of defense in protecting the host from infection, then researchers really needed to incorporate them in skin models.

 The reconstructed tissue models will be the basis for the development and testing of bio-actives for skincare applications and will allow research and development of anti-inflammatory properties of active ingredients.

BASF scientists will use CTIBiotech’s 3D bioprinting technology to increase their 3D bioprinted skin model portfolio. The company’s Cell Therapy Research Institute develops and produces predictive models of human tissues and cells for biomedical, pharmaceutical and dermal cosmetic research and development, so their technology will provide a powerful platform for skincare researchers who hope to study the function of macrophages in fully reconstructed skin.

3D printed skin model

This is a new milestone for the joint research efforts of both companies. BASF and CTIBiotech started their cooperation as early as 2011. And in 2015, the cooperation partners started working on 3D tissue models for the development and testing of bio-actives for skincare applications. Then, last year, they announced the first results whereby the experts demonstrated both the ex vivo production of physiological sebum in long-term culture of a 3D human sebaceous gland model and the regulation of this sebum production by means of active ingredients.

Now, with the development of the first 3D bioprinted skin models, the research partners are taking their investigation even further.

“Compared to current in vitro methods, the 3D immune bioprinted skin developed with CTIBiotech will allow analysis more in line with human physiology and the immune role of macrophages,” said Sébastien Cadau, 3D tissue engineering specialist at BASF in Lyon, Francce. “That’s how the technology is going to help us accelerate the development of innovative and highly reliable ingredients for the skin care market. Our understanding of an immunocompetent 3D skin provides the basis for developing and testing advanced cosmetic bio-actives for skincare applications.”

Macrophages constantly monitor the skin’s microenvironment for indications of cell stress, tissue injury or infection. They are essential to close wounds and to fully regenerate tissue. To maintain skin homeostasis, macrophages have a high degree of plasticity that promotes  or suppress inflammation

“CTIBiotech and BASF have a long history of collaborations on innovative human skin models to advance human skin care. CTIBiotech hosts a team of world experts for human tissue engineering with 3D Bioprinting technology that will strengthen the success of this partnership also in the future,” explained Colin McGuckin, Chief Scientific Officer at CTIBiotech.

BASF has worked in the past with other companies attempting to 3D bioprint skin, and many universities and institutes around the globe are racing in the field of regenerative medicine to progress with 3D printed skin technology. In 2015, Chinese researchers even hinted at making 3D printed skin a reality. But for now, BASF and CTIBiotech joint research will be the first 3D bioprinted skinmodels with immune macrophages, a big step in innovative 3D bioprinting.

[Images: BASF Care Creations and CTIBiotech]

Share this Article


Recent News

3D Printing News Briefs, April 27, 2024: Research, Digital Dentistry, Cycling, & More

3D Printing News Unpeeled: Asahi Kasei Enters 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Further Understanding of 3D Printing Design at ADDITIV Design World

ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...

3D Printer Maker EVO-tech Reborn as NEVO3D — Once More With Feeling

EVO-tech was a 3D printing service and original equipment manufacturer established in 2013 and based in Schörfling am Attersee, Austria. The company produced high-quality material extrusion systems featuring linear bearings,...

3D Systems Brings 3D Printed PEEK Cranial Implant to the U.S. with FDA Clearance

For more than 10 years, 3D Systems (NYSE:DDD) has worked hand-in-hand with surgeons to plan over 150,000 patient-specific cases, and develop more than two million instruments and implants from its...

Sponsored

CDFAM Returns to Berlin for Second Annual Symposium

The second CDFAM Computational Design Symposium is scheduled for May 7-8, 2024, in Berlin, and will convene leading experts in computational design across all scales. Building upon the first event...