Exone end to end binder jetting service

Wake Forest Institute for Regenerative Medicine Progresses with 3D Printed Skin Technology

Metal Parts Produced
Commercial Space
Medical Devices

Share this Article

wfirmAbout a year ago, researchers at the Wake Forest Institute for Regenerative Medicine (WFIRM) announced that they had successfully transplanted functional 3D printed tissue into animals. The 3D printed ear, bone and muscle structures, once implanted, matured into functional tissue and grew new blood vessel systems – a major breakthrough in the bioprinting and tissue engineering world. While that news has understandably garnered a great deal of attention, Wake Forest has also been working on some other bioprinting research that could have huge implications for healing.

Along with organs such as the heart, liver and kidneys, the skin has been a major area of focus for bioprinting researchers. Many experts believe that functional 3D printed skin will be a reality very soon, and that’s incredible news for burn victims and others suffering from severe skin damage or disease. At Wake Forest, the development of 3D printed skin is only one part of what the institute’s scientists are trying do as part of the Armed Forces Institute of Regenerative Medicine (AFIRM), a $75 million, federally funded project aimed at developing regenerative medicine technology to be applied to battle-related injuries.

Young-Joon Seol Wake Forest Institute for Regenerative Medicine (WFIRM) demonstrates Bioprinting muscle tissue, Richard H. Dean Biomedical Building (A1).

Young-Joon Seol of WFIRM works with a 3D printer to produce muscle tissue for facial reconstruction. [Image: WFIRM]

In 2013, WFIRM was selected to lead the second phase of the project, with institute director Anthony Atala, M.D., named as the lead investigator for AFIRM-II. The second phase has five areas of focus, according to Wake Forest:

  • Skin regeneration for burn injuries
  • Restoring function to severely traumatized limbs
  • Reconstruction for facial and skull injuries through tissue regeneration
  • New treatments to prevent rejection of “composite” transplants such as face and hands
  • Reconstruction of the genital and urinary organs and lower abdomen

skin2Not surprisingly, much of the research into these areas involves 3D printing. The WFIRM team is working with the 3D printing of complex tissue components such as bone, nerves, blood vessels, fat and muscle for face and skull reconstruction – an urgent need due to the frequency and severity of craniofacial injuries from explosions and high-velocity projectiles. In addition, WFIRM is deep into the development of a technology that involves printing new skin cells directly into burns and other serious skin injuries.

Normally, medical professionals treat severe burns by taking healthy skin from elsewhere on the body and grafting it onto the wound as a protective cover. However, extensive burn damage limits the amount of skin available for grafting, so it’s not always an effective or even feasible method of treatment. During phase one of the AFIRM project, scientists at WFIRM designed, built and tested a printer capable of printing skin cells directly onto burn wounds. The cells that make up the printing material, or ink, include multiple types of skin cells – a custom mix based on the nature of the wound being treated.

A scanner is used to scan the wound, recording its exact size and depth; the depth is particularly important as different types of skin cells are found in each layer of skin. The scan data then instructs the printer as to which types of cells to apply to each layer of the new printed skin, which would be extruded directly onto the wound. Unlike traditional skin grafts, the printer only requires a skin sample one tenth of the size of the burn to grow enough new cells for printing.

skin

While the printer is still at the prototype stage, clinical trials on mice and pigs have been successful, and the researchers are now waiting for approval to conduct human trials. They’re also exploring whether stem cells from amniotic fluid and placenta can be used to effectively heal wounds, which would eliminate the need to take any skin cells from the patient. Wake Forest hopes that they can begin using the technology to help wounded soldiers within the next five years. Discuss in the Wake Forest forum at 3DPB.com.

Share this Article


Recent News

Expansion Strategy: 3D Printing Digital Imaging Company In-Vision is Now a Stock Corporation

FX20 Printer & Continuous Fiber Reinforced ULTEM 9085 Increase 3D Printing in Demanding Industries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: October 24, 2021

It’s another busy week of events and roundups, covering topics from dispensing and medical applications to AM risk assessment, software, and much more. Read on for all the details! ViscoTec’s...

2021 Formnext Start-Up Challenge & AM Ventures Impact Award Winners Announced

While the physical event was canceled last year due to the COVID-19 pandemic, Formnext is back live and in-person this year, November16-19, albeit with some very specific rules for attendance....

Hexagon & Stratasys Announce Partnership to Integrate Digimat Software with ULTEM 9805

One of the world’s most prominent intelligent manufacturing software firms, Hexagon Manufacturing Intelligence, has announced a new partnership with Stratasys, an industry leader in producing 3D printers and solutions for...

RAPID + TCT 2021 Day 2: 3D Printing with Inkbit, Farsoon, AON3D, & Raise3D

At the recent RAPID + TCT 2021 in Chicago, I had the opportunity to attend keynote presentations, interview several industry companies, watch an awards ceremony, and walk the show floor....


Shop

View our broad assortment of in house and third party products.