nScrypt Sending Rugged Model of 3D Bioprinter to the Desert for Military Experiments in Challenging Climates

Share this Article

Three years ago, Florida company nScrypt, which was founded in 2002 as a Sciperio spin-out and develops next-generation, high-precision Micro-Dispensing and Direct Digital Manufacturing equipment and solutions for industrial applications, took home the top honor in RAPID’s 2016 Innovation Auditions Competition for its hybrid 3D printer. Since then, nScrypt has continued creating its innovative 3D printing systems, and some important people have taken notice.

Over the years, nScrypt and its technology have served a wide variety of industries, such as chemical/pharmaceutical, communications, electronics packaging, life science, printed electronics, solar cell metallization, and 3D printing. But the use cases have been really picking up in the defense and aerospace sectors.

The company’s technology has been used by the US military for applications such as creating a conformal phased array antenna and munitions, and NASA hopes to use its multi-material 3D printer to develop new sensing technology. In addition, nScrypt’s award-winning BioAssembly Tool (BAT) bioprinter will also be sent up to the International Space Station later this year. Now, the company is sending a rugged version of its BAT, which has been customized for bioprinting in challenging conditions, to the desert as part of a partnership with the US military, the 501(c)3 non-profit Geneva Foundation, and the Uniformed Services University 4D Bio 3 Program.

The team will be shipping the more lightweight version of the BAT, which is also referred to as an austere bioprinter, to a forward-deployed but undisclosed location. There, a team led by LTC Jason Barnhill of the United States Military Academy’s Department of Chemistry and Life Science (West Point) will spend ten weeks experimenting with the bioprinter in the extreme desert environment. As the overall goal of this project is to move 3D bioprinting out of quiet, sterile laboratories and into the real world of challenging, forward-deployed military positions, nScrypt’s BAT will be shrouded in a local environment for protection against the conditions.

Working in the field is generally a rather important necessity when it comes to military service and readiness. We’ve seen 3D printing implemented for many applications in this way, and research continues for other areas in which to use 3D printed items and 3D printing on location – making everything from weapons to water bottles, and figuring out how to recycle waste plastic into filament to make said items. Some teams are even working to achieve successful 3D printing of barracks, or B-Huts, in the field.

By bringing the ability to bioprint point-of-care items like bandages, biologics, biosensors, and stents on-demand to the desert, the warfighter can help improve critical healing and survival in less populated areas, where they would have a difficult time getting easy access to these items. Being able to bioprint on-site in this kind of remote location can give the military a major advantage, as the technology can lower the overall cost of medicine, including the logistics, refrigerated storage, and shipping that would typically be required.

During its time in the desert, the team will put the nScrypt customized 3D bioprinter through its paces, and complete several experimental prints on the system, including mesenchymal stem cells, next-gen wound bandages, and plastic medical models.

What else can we 3D print in the desert? Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: nScrypt]

Share this Article


Recent News

Blueprint Launches Technology Enablement Program—Brings Greater Knowledge to 3D Printing Users

MIT: A New Fiber Ink With Electronics Embedded Inside



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TU Delft Researchers Create Soft Robotics that Respond to Color-Based Sensors

As 3D printing and robotics continue to collide and complement each other, new machines are being created. In soft robotics, we’re seeing the emergence of a class of machines that...

MIT: Automated System Designs and 3D Prints Optimized Actuators and Displays to Spec

Actuators are complex devices that mechanically control robotic systems in response to electrical signals received. Depending on the specific application they’re used for, today’s robotic actuators have to be optimized...

Using Casting, Graphene, and SLM 3D Printing to Create Bioinspired Cilia Sensors

  What Mother Nature has already created, we humans are bound to try and recreate; case in point: biological sensors. Thanks to good old biomimicry, researchers have made their own...

Nanyang Technological University: Inkjet Printing of ZnO Micro-Sized Thin Films

In ‘Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices,’ thesis student Van Thai Tran, from Nanyang Technological University, delves into the realm of fabricating products with conductive...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!