NASA MSFC Materials & Process Development Offers Plan for New 3D Printing Materials & Hardware to Sustain Astronauts During Missions

Share this Article

Not surprisingly, NASA is working on new developments for space travel—partnering with Auburn University to create new sensing technology, materials for 3D printing in space, as well as new hardware and capacitors (devices used to store electricity).

In the latest from NASA MSFC Materials & Process Development, their goal is to create processes that can sustain production, recycling, and maintenance on-demand while astronauts are completing exploration missions.

Beginning with a variety of different sensing platforms, the Materials & Process Development document outlines plans for flexible sensing technology such as next-generation printed sensors and platforms to be used for monitoring the health of astronauts while at the International Space Station (ISS), along with the specific, unique materials and new processes to create such devices. The document also outlines the need for both assessing and integrating wireless communications and flexible parts.

For energy storage technology development, the following needs are outlined:

  • Development for triboelectric power to create a self-sustained sensor system
  • Completion of a completely printed supercapacitor
  • Development of high energy density supercapacitors for battery replacement
  • Realization of devices for scalable battery replacement applications

There are further plans to collaborate with other organizations and universities to create an In-Space Manufacturing Digital Design & Verification Database, along with another catalog of what parts and systems are to be created during missions. NASA also plans to create new laboratory methods such as:

  • Ceramic powder processing – materials can be reduced and homogenized
  • Vibratory Mill – using 3-axes grinding action
  • Micro mill – fast grinding for low-volume batches, achieving < 50nm particle sizes
  • Powder treatment – forming gas within a fluidized bed for creating dielectric properties for ultracapacitors

For particle size measurements in nanotechnology, NASA’s intention is to understand mean particle size and distribution aids in powder milling for uniform sizing. Along with that, sample preparation is vital to gathering proper data. They also plan on developing nano-inks through formulation with ceramic and metallic powders and additives, along with creating ‘thick film ink formulations’ with three-roll mills:

“Roller speed and spacing are both controllable and are key factors in the final product. Thin film inks require fewer additives (typically the powder material and a vehicle) and are used in direct write deposition systems. Therefore, lower viscosity is necessary, which can be achieved using a high-shear dispersion mixer.”

For 3D printing, the nScrypt 3D multi-material printer is targeted as the hardware of choice, featuring:

  • Four head capability
  • SmartPump for inks
  • Two nFD heads
  • Pick and place head for electronics
  • High precision printing at 300x300x150mm volume

The idea overall is to be creating a FabLab at the ISS, that will also include a direct current sintering furnace, for developing ultracapacitor and thermoelectric materials. There are also plans for development of both Perovskite Ultracapacitors (used to store energy, and test and charge instruments and devices) and Plasma Sintered (SPS) Supercapacitors (offering good potential for high energy density).

NASA has been using 3D printing for decades—long before anyone even knew what it was. In the past few years, however, as the technology has been launched into the mainstream with growing popularity, there have been numerous challenges where NASA encourages participants to compete in creating new 3D printing technology for the Moon and Mars, as well as space habitats and more. Researchers have studied different experimental filaments for use in space, as well as created devices for astronauts to test their own blood in space. Find out more regarding the latest in NASA developments here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Auburn University Materials Engineering Department]

Share this Article


Recent News

Additive Flow Goes Adds Additive Awareness to Generative Design

Cornet: Research Network in Lower Austria Explores Expanding 3D Printing Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Titomic to Deliver Two Kinetic Fusion Systems to Composite Technology Under AUD $25.5M Contract

The very definition of an industry leader, and serving as a forerunner within industrial-scale additive manufacturing in Australia, Melbourne-headquartered Titomic has just signed an AUD $25.5M contract for two TKF...

3D Printing News Briefs: February 21, 2020

In today’s 3D Printing News Briefs, we’re talking about new products and materials, an industry event, 3D printed electronics, and education. 3Doodler announced a new product, and Essentium will be...

Metal 3D Printing: Correlation Between Laser Power, Cooling Rates & Effects on Parts in LPBF Processes

US scientists are learning more about power, temperature, and the effects on metal 3D printing processes, with their findings outlined in the recently published ‘Subsurface Cooling Rates and Microstructural Response...

GKN Aerospace to Open Latest Additive Industries Process and Application Centre Close to Bristol, UK

GKN Aerospace is just one aspect of the powerhouse of manufacturing activity emanating from GKN—a company rich in history—with origins founded as far back as the 1700s. Overall, GKN presents...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!