Chinese researchers explore not only the inspiration of origami designs and structures in science and technology today, but also the uses of 4D printing in a range of industrial applications. Their findings have been recently published in ‘Miura-ori tube metamaterial with tunable dynamic property,’ as they explore how modern structures can be engineered to respond to their environment, whether as components for aerospace, soft robotics, or even oceanographic engineering. The difference in these 4D structures is that their complex structures are created through the stacking of Miura sheets and the tuning of origami metamaterials.
While tunable materials are obviously a commodity in engineering today, thus leading many designers from the 3D realm to that of the 4D, typical structures being created are often overly porous and lack desired overall integrity. These types of structures also cannot be changed once they have been manufactured. To overcome these challenges, the authors suggest the use of origami structures for engineering structures ranging from the nano to large scale.
“The goal of origami is to transform a flat square sheet of paper into an elaborate 3D structure through folding and sculpting techniques,” state the researchers. “It thus has fruitful merits such as easy to fabricate, avoiding the complex assembly, and normally lightweight.”
Origami structures in previous research studies have been proven to successfully generate shifts in resonance frequencies, actualize thermal expansion coefficients, tune electromagnetic responses, and even stiffness too. For this study, the authors were able to create two Miura sheets, identically assembled at their open sides, leading to the construction of a Miura-ori tube metamaterial. Numerical calculations were performed to capture both the natural frequency and dynamic properties of the unique metamaterial. A five-step process then ensued in making the Miura-ori tube metamaterials: cutting, moulding, stamping, trimming, and gluing.
The researchers examined the dynamic displacement response regarding harmonic load, realizing that it could be tuned ‘in wide range,’ and especially for both cases 2 and 3.
“The reason why the proposed Miura-ori tube metamaterial can be tuned dynamically has been also qualitatively explained from the theoretical perspective. These results open a new avenue toward lightweight and reconfigurable metamaterials with simultaneously engineered tunable dynamic properties,” concluded the researchers in their paper. “Moreover, unprecedented opportunities for lightweight structures to meet the demands with extremely wide range of tunable dynamic properties will be provided when multiple materials are used to constitute the Miura-based tube metamaterial.”
“Further research will focus on investigating the influences of the damping [50] on the tunable dynamic properties. Moreover, we will attempt to establish the dynamic model of the Miura-ori tube metamaterial by using the spring-mass-damping system [51] and derive the formulations of NNFs and dynamic displacement responses.”
3D printing may seem like magic—especially at the desktop where users are able to think up a concept in 3D from the comfort of their studio, workshop, or home and then poof! It is delivered right before their eyes from mere digital direction and some filament. 4D printing, however, takes this one step further, making it a continuing point of fascination for technological buffs today as it produces textures not only summoned seemingly out of nowhere by 3D design and printing, but once fabricated they come to life, breathing, moving, and morphing due to temperature and environment.
What makes 4D printing even more exciting is that it is obvious designers and engineers are just at the beginning of transforming industrial applications whether creating metamaterials, printing in powerful mediums like metal, or even bioprinting for regenerative medicine. Find out more about the 4D aspects of metamaterial with tunable dynamic properties here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Miura-ori tube metamaterial with tunable dynamic property,’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
3D Printing Financials: After Long Silence, 3D Systems Reports Q2 Losses, Sees Recovery Signs
3D Systems (NYSE: DDD) has finally shared its financial details for the second quarter of 2024 after a long delay. The company had been unusually quiet, with no updates on...
Emerging AM Technologies Analysis: Where Are They Now, Part 2
In March 2023, AM Research published the “Emerging AM Technologies Analysis: 10 Companies to Watch” report highlighting 3D printing companies with the potential to disrupt the additive manufacturing (AM) industry....
Oqton Wins over EOS with Quality Control Software Integration
When 3D Systems acquired Oqton, there were concerns about whether other original equipment manufacturers (OEMs) would continue to trust and share information with Oqton. Oqton’s automation and process software can...