Engineers at Rutgers University–New Brunswick are advancing beyond the realm of 3D printing, now fabricating smart materials in 4D that will transform as needed, according to their environment. Such structures could become transforming for numerous high-level applications, with shock-absorbing materials that will change as needed, for use in examples such as: aircraft or drone design for parts like wings that need to self-alter for varying performance, soft robotics meant to perform a wide range of tasks, and tiny, minimally invasive medical implants.
Findings regarding this latest research are outlined in ‘4D Printing Reconfigurable, Deployable and Mechanically Tunable Metamaterials.’ As the researchers explain, most metamaterials, as exotic and mechanically-tuned as they may be, are composed of fixed properties and are not able to adapt to many of the specific needs that users have today. With so much progressive technology at our fingertips, it really doesn’t seem to be too much to ask for materials to bend to our will. The Rutgers scientists don’t disappoint here either, creating complex geometries that are:
- Geometrically reconfigurable
- Functionally deployable
- Mechanically tunable
- Unique and lightweight
“Using digital micro 3D printing with a shape memory polymer, dramatic and reversible changes in stiffness, geometry, and functions of metamaterials are achieved,” state the researchers in their paper, authored by Howan Lee, Chen Yang, Manish Boorugu, Andrew Dopp, Jie Ren, Raymond Martin and Daehoon Han, all current or former Rutgers students, and Professor Wonjoon Choi at the Korea University.
Typical triggers in 4D printed materials are changes in temperature, exposure to moisture, and the amount of time elapsed. Materials, often made with different polymer-like substances, will remain rigid if pushed down—or they can become pliable and absorbent, functioning to absorb impact and shock. The scientists working on the project say that such materials can be transformed and deformed—and then they will revert upon exposure to heat.
“The stiffness can be adjusted more than 100-fold in temperatures between room temperature (73 degrees) and 194 degrees Fahrenheit, allowing great control of shock absorption,” states the research team.
“We believe this unprecedented interplay of materials science, mechanics and 3D printing will create a new pathway to a wide range of exciting applications that will improve technology, health, safety and quality of life,” says senior author Howon Lee, assistant professor in the Department of Mechanical and Aerospace Engineering.
While 3D printing is still taking the world by storm, from the DIY crowd to the upper echelons of industrial manufacturing from GE to NASA, technology has already evolved to the next level with 4D printing. Just as 3D printing offers the potential for incredible customization, like medical innovations that will allow for patient-specific care, 4D printing allows for materials to morph into desired shapes and textures for creations such as load-bearing structures, seating in luxury vehicles, and so much more—to include many forays into fashion like clothing and wearables.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: Rutgers news release]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Investing in Tooling Innovation is Key to Reshoring Success
Outsourcing and retirement have dramatically shrunk the manufacturing workforce in the U.S., creating a challenge to efforts at reshoring production production. Pictured here is a toolmaker assembling an injection mold,...
3D Printing Webinar and Event Roundup: January 19, 2025
We have a couple of in-person events in Las Vegas to tell you about this week, plus a few webinars, including one about 3D printing for dental restorations. Read on...
Additive Industries Talks 3D Printing for RF Components, Automotive, & More
Dutch company Additive Industries, which first unveiled its flagship MetalFab industrial 3D printing system in 2015 and officially launched it in 2017, was very busy last year. At Formnext 2023,...
Additive Manufacturing’s Opportunity: The Agile Solution to the US Manufacturing Crunch
The US manufacturing sector is bracing for what could be a perfect storm of supply shortages and surging demand. This ‘storm’, driven by reshoring efforts, potential tariffs, and ongoing manufacturing...