Lockheed Martin 3D Prints Large Titanium Domes for Satellite Fuel Tanks

IMTS

Share this Article

Global security and aerospace company Lockheed Martin has made many significant contributions to its industry through the use of 3D printing, from propulsion tanks and spacecraft parts to missile components and fuel tanks. The company, which received three Edison Awards this year for ground-breaking innovations in autonomy, directed energy, and satellite technology, has been invested in the innovative technology for quite some time, and recently completed the largest 3D printed parts it’s ever created…so far.

In order to hold up under difficult launch conditions and decade-long missions in the zero gravity conditions of outer space, satellite fuel tanks need to be both lightweight and strong. Titanium is an obvious choice of material, but it can take over a year to acquire 4-foot-diameter, 4-inch-thick titanium forgings, which also increases the overall cost of the tank. Additionally, if traditional manufacturing methods are used to fabricate these forgings, over 80% of the material is wasted.

This infographic shows the scale of the 3D printed domes, their placement on the tank, and overall location within an LM 2100 satellite.

That’s why Lockheed Martin chose to employ 3D printing to create a record-setting, 46-inch-diameter titanium dome for its satellite fuel tanks.

“Our largest 3-D printed parts to date show we’re committed to a future where we produce satellites twice as fast and at half the cost. And we’re pushing forward for even better results,” Rick Ambrose, the Executive Vice President of Lockheed Martin Space, explained. “For example, we shaved off 87 percent of the schedule to build the domes, reducing the total delivery timeline from two years to three months.”

The new fuel tank for Lockheed Martin’s largest satellites have 3D printed domes integrated into the body to cap them off.

The tank is made up of a traditionally manufactured, variable-length titanium cylinder, which is capped by two 3D printed domes; these three pieces are then welded together to make up the final product. Technicians at Lockheed Martin’s Denver facility fabricate the domes using Electron Beam Additive Manufacturing (EBAM) technology on a large 3D printer.

By 3D printing the domes, there is no longer any material waste, and the titanium is available to use with no wait time, which lowers the delivery time of the satellite tank from two years to just three months. This in turn helps the company cut its satellite schedule and costs by 50%.

“We self-funded this design and qualification effort as an investment in helping our customers move faster and save costs. These tanks are part of a total transformation in the way we design and deliver space technology,” said Ambrose. “We’re making great strides in automation, virtual reality design and commonality across our satellite product line. Our customers want greater speed and value without sacrificing capability in orbit, and we’re answering the call.”

These 3D printed tank domes are far bigger in size for the company’s qualified 3D printing materials – previously, its largest part was an electronics enclosure for the Advanced Extremely High Frequency satellite program that was only the size of a toaster. That makes these domes, which are large enough to hold nearly 75 gallons of liquid, a pretty big leap.

A Lockheed Martin engineer inspects one of the 3D printed dome prototypes at the company’s space facility in Denver.

The final rounds of quality testing for the satellite fuel tank and its 3D printed domes were completed earlier this month, which finally ends a multi-year development program with the goal of successfully creating giant, high-pressure tanks to carry fuel on satellites. Lockheed Martin technicians and engineers spared nothing on their quest to ensure that the tanks would meet, and even exceed, the reliability and performance required by NASA, as even the tiniest of flaws or leaks could spell disaster for a satellite’s operations.

The structure of the vessel was “rigorously evaluated,” according to a release, and the company’s techs ran it through an entire suite of tests in order to demonstrate its repeatability and high tolerances. Lockheed Martin is now offering the large satellite fuel tank, complete with its two 3D printed domes, as one of the standard product options for its 2100 satellite buses.

Discuss metal 3D printing, aerospace applications, and other 3D printing topics at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.

[Images: Lockheed Martin]

 

 

Share this Article


Recent News

3D Printing News Briefs, April 27, 2024: Research, Digital Dentistry, Cycling, & More

3D Printing News Unpeeled: Asahi Kasei Enters 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Further Understanding of 3D Printing Design at ADDITIV Design World

ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...

3D Printer Maker EVO-tech Reborn as NEVO3D — Once More With Feeling

EVO-tech was a 3D printing service and original equipment manufacturer established in 2013 and based in Schörfling am Attersee, Austria. The company produced high-quality material extrusion systems featuring linear bearings,...

3D Systems Brings 3D Printed PEEK Cranial Implant to the U.S. with FDA Clearance

For more than 10 years, 3D Systems (NYSE:DDD) has worked hand-in-hand with surgeons to plan over 150,000 patient-specific cases, and develop more than two million instruments and implants from its...

Sponsored

CDFAM Returns to Berlin for Second Annual Symposium

The second CDFAM Computational Design Symposium is scheduled for May 7-8, 2024, in Berlin, and will convene leading experts in computational design across all scales. Building upon the first event...