Global security and aerospace company Lockheed Martin has made many significant contributions to its industry through the use of 3D printing, from propulsion tanks and spacecraft parts to missile components and fuel tanks. The company, which received three Edison Awards this year for ground-breaking innovations in autonomy, directed energy, and satellite technology, has been invested in the innovative technology for quite some time, and recently completed the largest 3D printed parts it’s ever created…so far.
In order to hold up under difficult launch conditions and decade-long missions in the zero gravity conditions of outer space, satellite fuel tanks need to be both lightweight and strong. Titanium is an obvious choice of material, but it can take over a year to acquire 4-foot-diameter, 4-inch-thick titanium forgings, which also increases the overall cost of the tank. Additionally, if traditional manufacturing methods are used to fabricate these forgings, over 80% of the material is wasted.
That’s why Lockheed Martin chose to employ 3D printing to create a record-setting, 46-inch-diameter titanium dome for its satellite fuel tanks.
“Our largest 3-D printed parts to date show we’re committed to a future where we produce satellites twice as fast and at half the cost. And we’re pushing forward for even better results,” Rick Ambrose, the Executive Vice President of Lockheed Martin Space, explained. “For example, we shaved off 87 percent of the schedule to build the domes, reducing the total delivery timeline from two years to three months.”
The tank is made up of a traditionally manufactured, variable-length titanium cylinder, which is capped by two 3D printed domes; these three pieces are then welded together to make up the final product. Technicians at Lockheed Martin’s Denver facility fabricate the domes using Electron Beam Additive Manufacturing (EBAM) technology on a large 3D printer.
By 3D printing the domes, there is no longer any material waste, and the titanium is available to use with no wait time, which lowers the delivery time of the satellite tank from two years to just three months. This in turn helps the company cut its satellite schedule and costs by 50%.
“We self-funded this design and qualification effort as an investment in helping our customers move faster and save costs. These tanks are part of a total transformation in the way we design and deliver space technology,” said Ambrose. “We’re making great strides in automation, virtual reality design and commonality across our satellite product line. Our customers want greater speed and value without sacrificing capability in orbit, and we’re answering the call.”
These 3D printed tank domes are far bigger in size for the company’s qualified 3D printing materials – previously, its largest part was an electronics enclosure for the Advanced Extremely High Frequency satellite program that was only the size of a toaster. That makes these domes, which are large enough to hold nearly 75 gallons of liquid, a pretty big leap.
The final rounds of quality testing for the satellite fuel tank and its 3D printed domes were completed earlier this month, which finally ends a multi-year development program with the goal of successfully creating giant, high-pressure tanks to carry fuel on satellites. Lockheed Martin technicians and engineers spared nothing on their quest to ensure that the tanks would meet, and even exceed, the reliability and performance required by NASA, as even the tiniest of flaws or leaks could spell disaster for a satellite’s operations.
The structure of the vessel was “rigorously evaluated,” according to a release, and the company’s techs ran it through an entire suite of tests in order to demonstrate its repeatability and high tolerances. Lockheed Martin is now offering the large satellite fuel tank, complete with its two 3D printed domes, as one of the standard product options for its 2100 satellite buses.
Discuss metal 3D printing, aerospace applications, and other 3D printing topics at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.
[Images: Lockheed Martin]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Briefs, January 11, 2025: Ceramics, Acrylated Vegetable Oil, & More
It’s all about business and materials in today’s 3D Printing News Briefs! First up, GBC Advanced Materials selected XJet’s ceramic solution to scale up its production, and the XSPEE3D metal...
ICON and Lennar to Build 100 3D Printed Homes for the Homeless
Additive construction startup ICON plans to build 100 3D-printed homes. Partnering with Austin, Texas-based homeless charity Mobile Loaves & Fishes, the initiative builds upon 17 3D-printed homes previously completed at...
UNR Researchers and U.S. Army Corps of Engineers Build Bridge from 3D Printed Concrete Bricks
The U.S. Army Engineer Research and Development Center (ERDC), in collaboration with the University of Nevada, Reno and NASA, is advancing the field of additive construction (AC) through the development...
Virginia Tech Lands $1.1M to Bring 3D Printed Affordable Housing to Virginia
Virginia Housing is betting $1.1 million that advanced 3D printing technology can solve the state’s housing challenges. The non-profit has granted these funds to the Virginia Center for Housing Research...