AMS 2024

Lockheed Martin Hopes to 3D Print Titanium Spacecraft Fuel Tanks In-House

Electronics
Metal AM Markets
AMR Military

Share this Article

EBAM-Sciacky-879x485In the Sciaky additive manufacturing process, the hemispherical halves of tanks are built layer by layer as spools of titanium wire spin and provide material. As a result of using the process, Lockheed Martin Space Systems says they plan to re-think the way they make satellite propellant tanks, and they’ll eventually move the construction of those tanks in-house–and save money in the bargain.

MAVEN_propellant_tank-Lockheed_MartinAt this point, Lockheed Martin buys those critical titanium tanks from Orbital ATK. The three Mars orbiters use the Orbital ATK tanks as will NASA’s OSIRIS-Rex asteroid-probing space vehicle upon its completion and launch in 2016 launch.

Mike Hamel, vice president and general manager for Lockheed Martin, says that may well change if the additive manufacturing methods the company is testing are satisfactory.

“We may switch to additive manufacturing later,” Hamel says.

Much of the effort behind moving toward AM techniques at Lockheed Martin is the work of Rick Ambrose, the company’s executive vice president for space systems. Ambrose says it’s become critical to reduce the lead times for building satellites, and he says 3D printing holds the keys to reaching that goal.

The $4 million 3D printing machine Lockheed bought last year from Sciaky Inc. is capable of turning out fuel tanks of nearly 150 centimeters in diameter and the method can cut the cost of manufacturing propellent tanks by as much as half.

The process is also much speedier than casting those tanks in molds. When the lead time of the casting technique is included–around 20 months–and the time spent procuring the bulk, forged sciaky3titanium billets is factored in, additive manufacturing is considerably quicker.

“Manufacturers, for the first time, will be able to utilize Sciaky’s revolutionary additive manufacturing technology to produce production parts and prototypes in their own facility. The possibilities are endless,” says Mike Riesen, the general manager of Sciaky.

Material costs can be cut in relation to structural titanium parts that are machined from a billet or forged. Riesen adds that the process can also time spent machining parts by as much as 80%. According to Dennis Little, Lockheed’s vice president of production for space systems, those manufacturing advantages mean 3D printed titanium tanks will be in use on spacecraft before the decade is out if an internal evaluation of the process meets certification criteria from NASA and the Air Force.

Little also says similar tanks will be in use on commercial, military, and civil satellites “within the next couple of years.”

Do you know of any aerospace manufacturers already using additive processes to build their products? Let us know in the Lockheed Martin forum thread on 3DPB.com.

 

Share this Article


Recent News

3D Printing Webinar and Event Roundup: December 3, 2023

3D Printing News Briefs, December 2, 2023: Metal Powder, Additive Construction, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Spanish Clothing Company Mango Backs Ziknes 3D Printed Furniture Made with Recycled Materials

With its trendy and affordable designs that resonate globally—and €2.3 in annual revenues—Mango is boldly stepping into the realm of innovation and technology. Through its Mango StartUp Studio accelerator, the...

3D Printing News Briefs, November 30, 2023: Material Database, Bone Scaffolds, & More

We’re starting off with lots of materials news in today’s 3D Printing News Briefs, from Replique, Asahi Kasei, and Arkema; plus, a team of researchers are 3D printing metals with...

Featured

Half of Hyundai’s Singapore Innovation Center Is Run by Robots

Hyundai (KRX: 005380) has just inaugurated the Hyundai Motor Group Innovation Center Singapore (HMGICS), a groundbreaking facility set to transform the landscape of electric vehicle (EV) production. Equipped with AI,...

CELLINK Bioprinter Enables Bioprinted Hair Follicles for Skin Regeneration and More

In a landmark achievement, researchers at Rensselaer Polytechnic Institute in New York have successfully 3D-printed hair follicles in lab-grown human skin tissue, marking a significant advancement in the field of...