AMS 2025

Lockheed Martin Hopes to 3D Print Titanium Spacecraft Fuel Tanks In-House

Share this Article

EBAM-Sciacky-879x485In the Sciaky additive manufacturing process, the hemispherical halves of tanks are built layer by layer as spools of titanium wire spin and provide material. As a result of using the process, Lockheed Martin Space Systems says they plan to re-think the way they make satellite propellant tanks, and they’ll eventually move the construction of those tanks in-house–and save money in the bargain.

MAVEN_propellant_tank-Lockheed_MartinAt this point, Lockheed Martin buys those critical titanium tanks from Orbital ATK. The three Mars orbiters use the Orbital ATK tanks as will NASA’s OSIRIS-Rex asteroid-probing space vehicle upon its completion and launch in 2016 launch.

Mike Hamel, vice president and general manager for Lockheed Martin, says that may well change if the additive manufacturing methods the company is testing are satisfactory.

“We may switch to additive manufacturing later,” Hamel says.

Much of the effort behind moving toward AM techniques at Lockheed Martin is the work of Rick Ambrose, the company’s executive vice president for space systems. Ambrose says it’s become critical to reduce the lead times for building satellites, and he says 3D printing holds the keys to reaching that goal.

The $4 million 3D printing machine Lockheed bought last year from Sciaky Inc. is capable of turning out fuel tanks of nearly 150 centimeters in diameter and the method can cut the cost of manufacturing propellent tanks by as much as half.

The process is also much speedier than casting those tanks in molds. When the lead time of the casting technique is included–around 20 months–and the time spent procuring the bulk, forged sciaky3titanium billets is factored in, additive manufacturing is considerably quicker.

“Manufacturers, for the first time, will be able to utilize Sciaky’s revolutionary additive manufacturing technology to produce production parts and prototypes in their own facility. The possibilities are endless,” says Mike Riesen, the general manager of Sciaky.

Material costs can be cut in relation to structural titanium parts that are machined from a billet or forged. Riesen adds that the process can also time spent machining parts by as much as 80%. According to Dennis Little, Lockheed’s vice president of production for space systems, those manufacturing advantages mean 3D printed titanium tanks will be in use on spacecraft before the decade is out if an internal evaluation of the process meets certification criteria from NASA and the Air Force.

Little also says similar tanks will be in use on commercial, military, and civil satellites “within the next couple of years.”

Do you know of any aerospace manufacturers already using additive processes to build their products? Let us know in the Lockheed Martin forum thread on 3DPB.com.

 

Share this Article


Recent News

Caracol AM to Launch its First Metal 3D Printer at Formnext 2024

Gas and Watertight 3D Prints with DIAMANT Sealant



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printed Heat Spreader Could Improve Efficiency of Electronics

The low-hanging fruit for decarbonization has long been improving the efficiency of existing systems, hence the justification for LED lights and ENERGY STAR certified appliances. While such minor moves are...

3D Printing News Unpeeled: Marine Gearboxes, 3D Printed Motors and $1.7 Million in Seed Funding

UK based Equipmake just released their Ampere-220 e-axle system. The system, which is meant for high performance electric cars, was similar to one released on the Ariel HIPERCAR. It has...

CEAD Unveils 36-Meter-Long 3D Printer for Abu Dhabi’s Al Seer Marine

CEAD, a Dutch original equipment manufacturer dedicated to large-format 3D printers, has unveiled what it claims to be the world’s largest robotic arm-based 3D printer. At 36 meters long and...

3D Printed Biocomposites Could Help Reduce Marine Plastic Pollution

Concerns about the impact of plastic litter and microplastics in the oceans are at the forefront of environmental study. For decades, the marine environment has suffered from the degradation of...