The aerospace industry was one of the first major advocates of 3D printing, as the industry has been a driving force in the evolution of this technology. The industry covers a wide range of commercial, industrial and military applications that demand state-of-the art technology for mission critical needs. At the forefront of 3D printing is Lockheed Martin, which serves as a clear leader through their ability to rapidly implement innovation and use of 3D printing across prototyping, tooling and production of components. Lockheed is able to create significant varying parts and designs that are cost effective, reliable and durable more so than traditional machining methods, due to the improvements of 3D printing technology.
The Research & Development Tax Credit
Enacted in 1981, the now permanent Federal Research and Development (R&D) Tax Credit allows a credit that typically ranges from 4%-7% of eligible spending for new and improved products and processes. Qualified research must meet the following four criteria:
- Must be technological in nature
- Must be a component of the taxpayer’s business
- Must represent R&D in the experimental sense and generally includes all such costs related to the development or improvement of a product or process
- Must eliminate uncertainty through a process of experimentation that considers one or more alternatives
Eligible costs include US employee wages, cost of supplies consumed in the R&D process, cost of pre-production testing, US contract research expenses, and certain costs associated with developing a patent.
On December 18, 2015, President Obama signed the PATH Act, making the R&D Tax Credit permanent. Beginning in 2016, the R&D credit can be used to offset Alternative Minimum Tax, for companies with revenue below $50MM and for the first time, pre-profitable and pre-revenue startup businesses can obtain up to $250,000 per year in payroll taxes and cash rebates.
Remote Interface Unit
Lockheed Martin is planning, for the first time, to use additive manufacturing to develop a part that will be on a military satellite. The complex unit is an aluminum electronic enclosure designed to hold avionic circuits, and is a part that would require multiple components and processes to manufacture under regular machining. But with 3D printing, the parts total is reduced to just one, which in turn reduces manufacturing time from six months down to 1.5 months, as well as reducing assembly time from 12 hours to just 3 hours. Lockheed hopes this successful part can open more 3D printing opportunities for their several other extensive aerospace programs.
Orion Spacecraft
NASA’s Orion spacecraft is a program designed to send astronauts to the moon and beyond in a series of exploration missions. The craft is going to be made of more than 100 3D printed parts, the majority of them made by Lockheed Martin and using state-of-the art materials, like the new Antero thermoplastic material, which is designed to meet NASA’s requirements for heat and chemical resistance. The use of 3D parts was crucial for this program as nearly every piece that was 3D printed was more efficient than traditional parts and reduced costs to the spacecraft overall.
Fuel Tanks
Lockheed Martin, in partnership with Stratasys’ RedEye 3D printer, were able to develop large fuel tanks that store propellant for satellites. The largest fuel tank was as large as 15 feet long, the largest piece ever manufactured by a RedEye printer and one of the largest aerospace parts ever made by a 3D printer. The fuel tanks themselves are the first ever successful ones to be produced through additive manufacturing, and were done in a highly condensed time frame for nearly half the cost of machining the parts. Due to the sheer size of these parts, Lockheed built several smaller parts to fuse together and finalize the product in time to market a competitive contract bid process. They would not have been able to do this had they machined the parts.
Trident II D5 Fleet Ballistic Missile
Lockheed Martin has been the primary ballistic missile contractor for the US Navy since 1955 and nothing has changed as they remain the primary supplier. Lockheed was called upon to develop another ballistic missile that would be known as the Trident II D5 Fleet Ballistic Missile. This is a three-stage missile that can travel an average range of 4,000 nautical miles while carrying multiple independently targeted missiles. Within the missile is a 3D printed component that is similar to the one used on Lockheed Martin’s satellites. The one-inch wide aluminum alloy piece is a connector backshell component that protects vital cable connectors in the missile. The component was designed and fabricated using only 3D design and printing methods that allowed engineers at Lockheed to produce this part in half the time it would take with machining methods.
Our articles published in Lockheed’s major business areas are presented below:
Conclusion
Lockheed Martin is undeniably a leading manufacturer of all things relating to the aerospace industry. Not only do they produce high quality and critical products, but they consistently find ways to innovate and stay steps ahead of the field with the use of additive manufacturing to bolster their already highly advanced product lines. Lockheed expanded this vast production through the acquisition of Sikorsky Aircraft, the leading helicopter manufacturer, which will gain a boost in their existing additive manufacturing capabilities after joining the Lockheed portfolio. The continued integration of 3D printing and large acquisitions is allowing Lockheed to develop parts that are giving aircraft extended service lives, reduced fuel costs, weight reduction and increased strength.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Charles Goulding & Ryan Donley of R&D Tax Savers discuss Lockheed Martin.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Würth Additive White Paper Explains the Synergy Between AM & Digital Inventories
In the latest Additive Manufacturing (AM) Research white paper, co-produced with Würth Additive Group (WAG), AM Research and WAG describe the emergence of the market for digital inventory platforms, as...
Artec 3D Releases Two New 3D Scanners at IMTS 2024
Artec 3D, the US-Luxembourg original equipment manufacturer (OEM) of high-resolution 3D scanners, has released two new products at the International Manufacturing Technology Show (IMTS) in Chicago (September 9-14). First off,...
3D Printing Webinar and Event Roundup: September 8, 2024
In this month’s first 3D Printing Webinar and Event Roundup, things are picking up! There are multiple in-person events this week, including the TETS Symposium, Additive Manufacturing in Medicine, a...
The Impact of IMTS on Big 3D Printing
From September 9-14, IMTS 2024 – The International Manufacturing Technology Show takes place at McCormick Place in Chicago, and celebrates the 10th anniversary of an audacious team, including Oak Ridge...