Additive Manufacturing Strategies

Russian Space Agency Roscosmos Developing Experiment to 3D Print Living Tissue on the International Space Station

ST Medical Devices

Share this Article

International_Space_Station_after_undocking_of_STS-132Space, the final frontier…and another venue, with a great view, for 3D printing! It’s been over two years since the first functioning 3D printed object was fabricated in space, and since then, the 3D printing innovation train has been barreling down the tracks. We’ve written about projects completed on and for the International Space Station (ISS) before, including 3D printing spare parts in space, and the ongoing Space Design Contest from Made In Space and Pinshape. But while we’ve seen work done for bioprinting in zero-G we don’t hear too much about medical 3D printing in space yet. That is about to change, as news sources are reporting that an experiment to 3D print living tissue on the ISS is in the early development phases at Russian space agency Roscosmos, also known as the Roscosmos State Corporation for Space Activities.

roscosmos-logo

Roscosmos logo

Using a 3D printer to produce living tissue is a pretty cutting edge biomedical technology, one we hear about most often from companies like Organovo and institutes such as Wake Forest and Harvard; it can also be a legally challenging minefield to navigate, as laws of nature are generally patent ineligible. 3D printing living tissue is extremely difficult: once you’ve successfully created and 3D printed the cellular structures, you still have to keep the cells alive. This difficulty grows exponentially when you add the vacuum of space and a zero gravity environment to the equation. Scientists will need to create special scaffolding to support the work-in-progress on the ISS. Engineers with leading Russian space manufacturer Rocket and Space Corporation (RAS) Energia are working with Roscosmos on the project, and think they can achieve considerable progress by placing the 3D printing equipment in microgravity conditions.

nasa-logoAccording to the Space Station Research Experiments page on the NASA website, “In microgravity, controls on the directionality and geometry of cell and tissue growth can be dramatically different to those on Earth. Various experiments have used the culture of cells, tissues and small organisms on orbit as a tool to increase our understanding of biological processes in microgravity.”

A department head with RAS Energia said in an interview with Russian newspaper Izvestia that an experiment using magnetic field manipulation to 3D print tissue onboard the ISS is currently being developed and has passed an important internal review, which concluded that “the technology is feasible.” There is not a specific timetable for the experiment yet: Roscosmos gets the final say on that.

Valentin Uvarov, RAS Energia department head for commercial projects of manned space exploration, said in the interview, “The next stage involves the development and approval of technical specifications and design documentation for the scientific equipment that will be used for the experiment.”

3d-printer-on-iss

Zero Gravity 3D Printer on the International Space Station

Before the equipment is completed and sent up to the ISS, it needs to be subjected to extensive testing on the ground. Then procedures will need to be developed for the experiment, and later taught to the members of the ISS crew. The 3D printer already onboard the ISS is only meant to fabricate tools, not to make living tissue.

The Institute of Biomedical Problems (IBMP), which was founded in Russia in 1963 to offer biomedical support for space flights, is also involved with the preparation and implementation of this experiment. IMBP Deputy Director, and corresponding RAS Energia member Lyudmila Buravkova, said that this proposed experiment can offer high scientific value “for the understanding of the contribution of the gravitational factor in tissue morphogenesis and its prospects in the development of new areas of biomedical support manned missions into deep space.” Discuss in the 3D Printed Tissue forum at 3DPB.com.

Share this Article


Recent News

3DPOD Episode 93: Bound Metal 3D Printing with Mantle CEO Ted Sorom

Eco-Friendly 3D Printing: Sustainable Luxury Handbags Enabled with AM



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

3D Printing News Briefs, January 12, 2022: Rebranding, Bioprinting, & More

First up in today’s 3D Printing News Briefs, Particle3D has gone through a rebrand, and a team of researchers developed a way to 3D print and preserve tissues in below-freezing...

3D Printing News Briefs, January 5, 2022: Software, Research, & More

We’re kicking off today’s 3D Printing News Briefs with 3D software, as Materialise has integrated Siemens’ Parasolid with its own Magics software. Moving on, The Virtual Foundry launched a metal...

3D Printing News Briefs, January 1st, 2022: CES 2022, Standards, Business, & More

Happy New Year! We’re starting with this week’s CES 2022 in today’s 3D Printing News Briefs, then moving on to a new AM standard and business news from Roboze and...


Shop

View our broad assortment of in house and third party products.