3D Printed Bio-Tissues: Navigating Patent Protection

Share this Article

Navigating what is patentable in 3D printed bio-tissues is complicated.  Generally, laws of nature, natural phenomena, and abstract ideas are patent ineligible.  Thus a new mineral discovered in the earth or a new plant found in the wild is not patentable subject matter.  Likewise, Einstein could neither patent his celebrated law E=MC2, nor could Newton have patented the law of gravity.[1]  Courts have therefore struggled with what constitutes an invention when it comes to the creation of a living thing in the laboratory.

What law governs this?  Patentable subject matter is defined by 35 U.S.C. § 101, the statute that codifies the patentability of inventions, and states:

“Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.”

35 U.S.C. § 101.  This, however, does not tell the whole story.  Courts have interpreted 35 U.S.C. § 101 and applied it in numerous, and often complicated ways.

720px-seal_of_the_united_states_supreme_court-svgSo where do we stand?  In an early case addressing this issue, Diamond v. Chakrabarty, 447 U.S. 303 (1980), the Supreme Court in found a human-made, genetically engineered bacterium that was capable of breaking down multiple components of crude oil was patent eligible.  The court held the micro-organism constituted a “manufacture” or a “composition of matter” within the meaning of the patent statute (35 U.S.C. § 101).  The inventor had produced a new bacterium with markedly different characteristics from any found in nature that had the potential for significant utility (breaking down the crude oil components).

More recently, in Mayo Collaborative Services v. Prometheus Laboratories, Inc., 132 S. Ct. 1289 (2012), the Supreme Court found correlations between blood test kits’ results and a patient’s health were not entitled to patent protection. The Court held that if a process was found to be well-understood, routine, conventional activity, and previously engaged by those in the field, then it could not obtain protection within the meaning of § 101.  The petitioner had patented three additional steps to test patients’ metabolites in their blood and used those steps in conjunction with already well-known natural laws.  The additional steps included an administering step, a determining step, and lastly a step to either increase or decrease the amount of treatment based on how the patient was responding.  The Court said that these additional steps did not provide any significant novelty or an unknown within the medical community for which the petitioner should be granted a patent.  The Court also warned that there is an inherent danger in granting patents based in part on natural laws because they have the potential to inhibit future innovation premised upon them, a danger that becomes acute when a patented process amounts to no more than an instruction ‘to apply the natural law’ or otherwise forecloses more future invention that the underlying discovery could reasonably justify.[2]

A year later, in Ass’n for Molecular Pathology v. Myraid Genetics, Inc., 133 S. Ct. 2107 (2013), the Supreme Court held that certain synthetically created deoxyribonucleic acid (“DNA”), which they called complementary DNA (“cDNA”) could be subject to patent protection.  The Court made a distinction in this case between naturally occurring DNA and synthetically created cDNA.  First, the Court unanimously held that a naturally occurring DNA segment was a product of nature and therefore not patent eligible under 35 U.S.C. § 101, in spite of the fact that it was isolated in a laboratory setting.[3]  The Court held that Myriad did not create anything with markedly different characteristics from that which is found in nature.[4]  However, the Court went on to state that the lab technician unquestionably created something new when cDNA was made and therefore allowed patent protection on the cDNA.[5]  Similarly, a year earlier in Mayo the Court attempted to strike a balance between creating incentives that led to creation, invention, and discovery, and impeding the flow of information that might permit, indeed spur, invention.[6]

dna-stock-imageTwo recent cases illustrate how lower courts continue to interpret what is patentable in the field of bio-engineering.  Earlier this year, the Federal Circuit ruled on Rapid Litig. Mgmt. v. CellzDirect, Inc. in a case where the lower court found that the method of refreezing certain cells found in the liver in order to harvest them was unpatentable. [7]  The Federal Circuit disagreed.  In its ruling, the Federal Circuit found that there was enough in the patent to recognize that the claims were not necessarily directed at the naturally occurring cells but rather, the claims in the patent were directed to a new and useful technique for preserving the cells.[8]  Therefore, the Rapid Litig. Mgmt. decision seems to be more analogous to the Myraid Genetics’ decision than it does to Mayo.

(Photo: Thinkstock)

(Photo: Thinkstock)

The Rapid Litig. Mgmt. decision is in contrast to another recent Federal Circuit court case, Ariosa Diagnostics, Inc. v. Sequenom. [9]  In that case, the plaintiff-appellee, a seller of the Harmony Test, which is a non-invasive test used for prenatal diagnosis of certain fetal characteristics, sought to invalidate a patent on the testing of cell-free fetal DNA (“cffDNA”).  In the patent at issue, the patent holder applied a combination of known laboratory techniques to the discovery of cffDNA and applied that to the testing of cffDNA in sperm and plasma, which had yet to be done.  The method was subsequently awarded a patent relating to the testing for cffDNA in sperm and plasma.[10]  In its review, the Federal Circuit, however, relying on Mayo, held that the method steps involved in the patent were already well-understood, conventional, and routine, and therefore, not new and useful.  The only subject matter new and useful as of the date of the application was the discovery of the presence of cffDNA in maternal plasma or serum.[11]  This case therefore seems to be more comparable with Mayo than it does Myraid.

What do these decisions mean for patent protection in bio-printed tissues?  Claiming methods that are well-understood, routine, conventional activity, and previously engaged by those in the field, are unlikely to receive patent protection unless there is a significantly new and novel step involved in the process.  The Federal Courts suggest that a patent will likely be denied if it is based on a natural law and/or an object that exists in nature.  Thus, creating a new tissue, or applying a novel means to harvest that tissue, is much more likely to be accorded patent protection.

William J. Cass, Esq. and Adam I. Bercowetz, Esq.

William J. Cass is the Co-Chair of the Additive Manufacturing Practice Group of Cantor Colburn LLP located at 20 Church Street, 22nd Floor, Hartford, CT 06103-3207.

[1] Diamond v. Chakrabarty, 447 U.S. 303, 310 (1980).

[2] Id. at 1300.

[3] Ass’n for Molecular Pathology v. Myraid Genetics, Inc., 133 S. Ct. 2107, 2119 (2013).

[4] Id. at 2117.

[5] Id. at 2119.

[6] Id. at 2116.

[7] Rapid Litig. Mgmt. v. CellzDirect, Inc., 827 F.3d 1042 (Fed. Cir. 2016).

[8] Id. at 1048.

[9] Ariosa Diagnostics, Inc. v. Sequenom, Inc., 788 F.3d 1371 (Fed. Cir. 2015).

[10] Id. at 1153.

[11] Id. at 1378.

Share this Article

Recent News

Italy: Studying Properties & Geometry of Scaffold-Like Structures for Tissue Engineering

The State of 3D Printing in Heavy Equipment


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Volvo’s Conservation Project: 3D Printed Tiles for a Living Seawall at Sydney Harbour

Oysters, seaweed, fish, algae and many more organisms have a new home at North Sydney Harbour. At one of the world’s largest Living Seawalls in Bradfield Park, an ocean conservation...

Volvo CE Adopts 3D Printing for Spare Parts and Prototyping

Volvo Construction Equipment (Volvo CE) is one of the largest companies in the construction equipment industry, with more than 14,000 employees worldwide. The company’s values center around sustainability and innovation,...

Metal Additive Manufacturing Helps Renault Trucks Reduce Weight of 4-Cylinder Engine by 25% Using 3D Printed Components

In spring of 2015, 3D artist and designer Bernhard Bauer used Blender to 3D model, from scratch, and 3D print a 1:14 scale Renault delivery truck replica for one of...

Old Meets New in Latest OpenRC Tire Design from Thomas Palm

Leif Tufvesson loves cars. He spent part of his career working as a technician for Volvo’s Research and Development Department in Gothenburg, Sweden, followed by a six-year stint at the...


View our broad assortment of in house and third party products.

Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!