AMS 2026

Self-Folding Medical Implants Combine 3D Printing & Origami

AM Investment Strategies
Formnext

Share this Article

delft-university-of-technology-logoOrigami can be nearly magical, but there’s more to it than artistry; there is also some highly complex mathematics. As with so many artistic endeavors, it turns out there are contributions far beyond aesthetics to be gleaned from the act of creating origami. So much so that there are faculty at MIT, for example, who have made it the focus of their academic investigations. Now, the age old tradition of origami is coming together with cutting edge additive manufacturing to provide a benefit to recipients of medical implants. There are a number of difficulties to overcome before this type of implant is a reality, but a primary obstacle has now been overcome. Dr. Amir Zadpoor, a researcher at Delft University of Technology (TU Delft), discussed, in the journal Materials Horizons, the difficulty that led his research team to consider the lessons of origami:

“Ideally, biomaterials should be optimised not only in terms of their 3D structure but also in terms of their surface nano-patterns. 3D printing enables us to create very complex 3D structures, but the access to the surface is very limited during the 3D printing process. Nanolithography techniques enable generation of very complex surface nano-patterns but generally only on flat surfaces. There was no way of combining arbitrarily complex 3D structures with arbitrarily complex surface nano-patterns.”

Recently, however, the TU Delft researchers announced the production of flat surfaces that can, when deployed inside the body, self-fold into the form that is required for their implant. At least, that’s the plan for them; they’re not quite ready for prime time just yet. What’s important in making these origami implants work is twofold: the materials from which the sheet can be fabricated and the ability to teach them how to fold on their own after insertion. Dr. Zadpoor, one of the lead authors of the study, explained the idea behind the devices:

dna“Nature uses various activation mechanisms to program complex transformations in the shape and functionality of living organisms. Inspired by such natural events, our team developed initially flat (two-dimensional) programmable materials that, when triggered by a stimulus such as temperature, could self-transform their shape into a complex three-dimensional geometry. We used different arrangements of bi- and multi-layers of a shape memory polymer (SMP) and hyperelastic polymers to program four basic modes of shape-shifting including self-rolling, self-twisting (self-helixing), combined self-rolling and self-wrinkling, and wave-like strips.”

While this may sound like the stuff of science fiction, these kinds of programmable materials have actually been a regular part of our environments for the last decade. You may have seen them if you’ve been through the Denver airport, where the shades raise or lower based on the internal temperature. A higher temperature causes the material to loosen, thereby lowering the shades, while a lower temperature causes them to draw up. Using this principle, combined with very specific programming of the planes, the hope is to minimize the invasive nature of procedures and to allow for less expensive, custom implants to be easily created. You can read the full study here. Discuss in the Origami forum at 3DPB.com.

[Source: Engineering.com]

 



Share this Article


Recent News

Spanish Researchers Use Meltio’s Metal 3D Printing to Create Titanium Implants

Lufthansa Technik Uses FDM To Make Aircraft Interior Parts



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

NECO Adopts 3D Printing to Modernize Drone Manufacturing

As demand grows for more agile and cost-effective production methods, additive manufacturing is increasingly seen as a viable solution for end-use parts — not just prototyping. NECO, a contract manufacturer...

3DPOD 278: Large Format Polymer AM Services with Austin Schmidt, Additive Engineering Solutions

Austin Schmidt was inspired to start Additive Engineering Solutions after seeing the BAAM 3D printers. His company is now the largest service provider in large-format material extrusion systems. We talk...

From Hobby to Hustle: How the Prosumer 3D Printing Market Is Rewriting the Industry

When many hear 3D printing, they still think of hobbyists tinkering in garages, making figurines, models, or toys. But that image has changed. A new wave of users exists between...

3D Printing News Briefs, October 30, 2025: EASA Certification, Ultrasonic Metal Atomization, Kickstarter, & More

In today’s 3D Printing News Briefs, a Fortune 500 company has grown its deployment of 3DPrinterOS. The Aviation AM Centre achieved an important certification for metal additive manufacturing on EOS...