New Masked SLA Bioprinter Revealed by TissueLabs

RAPID

Share this Article

Innosuisse-backed startup TissueLabs rolled out a bioprinter during the 2021 Tissue Engineering and Regenerative Medicine International Society (TERMIS) world congress in the Netherlands. The unveiling of TissueRay,  the first masked stereolithography (MSLA) 3D bioprinter in the market, marks the latest step in the Brazilian-Swiss company’s effort to make tissues in the lab and eventually (many years from now) organs for therapeutic applications.

Unlike currently available light-based bioprinters, which rely on digital light processing (DLP), TissueRay uses MSLA technology, leveraging an array of light-emitting diodes combined with an LCD mask to shape the light image instead of using a digital light projector, creating the resin’s curing pattern.

TissueRay carries a 4K screen, which results in a 35 μm XY resolution, and accepts Petri dishes of any size up to 60 mm, capable of printing objects up to seven centimeters. Researchers can use it to create mini and microfluidic systems, organs-on-chips, cell-laden constructs, and scaffolds for tissue engineering and regenerative medicine applications. In addition, users will find that perfusable channels will allow the study of diverse flow patterns in biological constructs.

“We believe cutting-edge technologies in healthcare should be available for the most users possible. Otherwise, the time it takes for bioprinting-based therapies to reach patients is incompatible with the urgency that life-threatening diseases impose. Our commitment is to reduce the prices of commercial platforms for end-customers to drive bioprinting-based therapies a step closer to those who need them,” emphasized Gabriel Liguori, founder and CEO of TissueLabs, and nominated as one of MIT Innovators Under 35 for his work.

Bioprinted structures using TissueLabs TissueRay bioprinter.

Bioprinted structures using TissueLabs TissueRay bioprinter. Image courtesy of TissueLabs.

Born in Brazil, Liguori is a 30-year-old physician, and tissue engineering researcher focused on developing technology that will one day “3D print a functional bioartificial heart.” Liguori has a unique perspective on patients’ needs, having been diagnosed at an early age with pulmonary atresia, a congenital heart disease in which the pulmonary valve does not form properly.

In 2019, with the inception of his new startup in Brazil, Liguori raised a $1.6 million seed round to build, patent, and market a 3D bioprinter and bioinks. Its first extrusion-based bioprinter, called TissueStart, was specially designed for scientists who are just starting to work with biofabrication. Constructed in plexiglass, offering high resistance, long durability, and easy cleaning, the bioprinter became widespread in Latin America, where it provided the quality of a flagship 3D bioprinter for a fraction of the price.

Researcher handling bioprinted tissue.

Printing with TissueLabs TissueRay bioprinter. Image courtesy of TissueLabs.

Following the release of its entry-level printer, TissueLabs announced it was moving its headquarters to Switzerland, with hopes of introducing the company’s products to the European market, considered the second-fastest moving market for bioprinting. In addition, the company has very ambitious plans and works with a clear moonshot to create the first transplantable bioartificial heart in the world.

At the Lugano district of Manno, TissueLabs is centered on offering local scientists greater flexibility to their research through biomaterials and hardware. Backed by the Swiss Innovation Agency (Innosuisse) and Brazil’s government research foundations Fapesp and Finep, TissueLabs transforms every new development into a commercially available product. Over 20 renowned research labs worldwide are using its technology, including King’s College London, the University of Zurich in Switzerland, Indiana University, and the National Institute of Health and Medical Research (Inserm) in France.

TissueLabs’ new TissueRay uses masked SLA technology. Image courtesy of TissueLabs.

The TissueRay 3D bioprinter will retail for €11,999 (roughly $14,000). However, it is available for pre-order at a 20%-discounted rate for the remaining days of the year. Once again, TissueLabs hopes to drive adoption of the technology, not only through its product offering but also the price tag. Since the launch of its extrusion-based system, originally available for €5,000 ($5,600), the company has competitively priced its offerings. Liquori hopes the new bioprinter will become a catalyst for more researchers to access biofabrication technologies and, consequently, bring bioprinting-based therapies to the clinical practice sooner.

Besides the light-based bioprinter, TissueLabs will also offer the bioinks needed for the TissueRay. Additionally to PEGDA–a blank slate hydrogel that gels rapidly at room temperature through UV light–and GelMA-based bioinks, the startup will also provide tissue-specific materials. The plan is to have the same options available for light-based bioprinting, including alternatives for several tissues, such as adipose, bone, brain, cartilage, colon, kidney, liver, lung, muscle, myocardium, pancreas, skin, spleen, stomach, and vascular. Moreover, the business will continue offering its services to support research and development in tissue engineering and regenerative medicine.

Share this Article


Recent News

Manufacturing World Tokyo 2024 Set to Showcase Innovation in AM, 3D Printing and More!

3D Printing Webinar and Event Roundup: May 19, 2024



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, May 18, 2024: Sustainability, Mass Spectrometry, & More

We’re starting with sustainability news in today’s 3D Printing News Briefs, as Stratasys has published its second ESG and Sustainability Report. Moving on, Electroninks opened a headquarters in the APAC...

BMF’s New Subsidiary 3D Prints BioChips for Organ-on-a-Chip Research

Building on its proven track record in groundbreaking projects like glaucoma stents and microneedles, Boston Micro Fabrication (BMF) launched a new subsidiary, BMF Biotechnology Inc. Headquartered in San Diego, California,...

Finnair Hires AM Craft to 3D Print Plastic Parts for Aircraft Interiors

Riga-based AM Craft, a supplier specialized in 3D printing aviation components and certified under EASA Part 21G, announced a significant achievement today. The company will assist in upgrading Finnair’s A320...

3DPOD Episode 198: High Speed Sintering with Neil Hopkinson, VP of AM at Stratasys

Neil Hopkinson, a pioneering 3D printing researcher, played a pivotal role in developing a body of research that is widely utilized today. He also invented High Speed Sintering (HSS), also...