Researchers at the Delft University of Technology (TU Delft) have developed a method for bioprinting algae to create living, photosynthetic materials that are tough and resilient. The resulting study, published in the journal Advanced Functional Materials, describes the outcome of the research and its implications for the future.
The project began with the 3D printing of dead cellulose excreted from bacteria, which demonstrates such useful qualities as flexibility, strength, toughness, and shape memory. A 3D printer was then used to deposit living algae onto the cellulose substrate. In turn, the material had both the photosynthetic ability of the algae and the strength of the cellulose. Not only was the resulting material biodegradable and its production scalable and low-cost, but the photosynthetic nature of the material means that it could feed on sunlight and potentially regenerate.
The authors noted that the materials could survive for at least three days without nutrients, but nutrients would obviously extent their survival. Printed objects could be readily scaled up to ≥70 cm × 20 cm in size. The cellulose made the printed objects strong enough to stand on their own, but they could also be detached and reattached to different surfaces.
“The printing of living cells is an attractive technology for the fabrication of engineered living materials.” says Marie-Eve Aubin-Tam, an associate professor from the Faculty of Applied Sciences. “Our photosynthetic living material has the unique advantage of being sufficiently mechanically robust for applications in real-life settings.”
Applications for such a unique material include the fabrication of artificial leaves that could convert water and carbon dioxide into oxygen and energy. With the ability to convert the sugars produced by the leaves into fuel, it could be possible to generate energy in places where plants don’t grow well, such as in space.
“We created a material that can produce energy simply by placing it into the light,” says Kui Yu, a Ph.D. student involved in the work. “The biodegradable nature of the material itself and the recyclable nature of microalgal cells make it a sustainable living material.”
Another application could be the fabrication of elements that sense and respond the way that plants do. Elvin Karana, from the Faculty of Industrial Design Engineering, elaborated:
“What if our everyday products were alive: could sense, grow, adapt, and eventually die? This unique collaborative project shows that this question is beyond the realm of speculative design. We hope our article will spark new conversations between design and science communities and inspire new directions for investigations for future photosynthetic living materials.”
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
MX – Machining Transformation: Revolutionizing Manufacturing with Additive Technologies
The machining industry is experiencing a profound transformation, propelled by four key trends: Process Integration, Automation, Digital Transformation (DX), and Green Transformation (GX). Central to this evolution are Additive Manufacturing...
The Role of Multiplatform Solutions in Advancing Industrial Large Format 3D Printing
The past tumultuous year in the additive manufacturing industry have led to highs and lows for several companies. The magic recipe that continues to appear to lead to continuous growth...
3D Printing News Briefs, January 25, 2025: ESG & Sustainability, Layoffs, Furniture, & More
We’re starting off with some event news in today’s 3D Printing News Briefs, as AMUG has announced the keynote speakers for its 2025 conference, and Dyndrite starts its World Tour...
Investing in Tooling Innovation is Key to Reshoring Success
Outsourcing and retirement have dramatically shrunk the manufacturing workforce in the U.S., creating a challenge to efforts at reshoring production production. Pictured here is a toolmaker assembling an injection mold,...