Additive Manufacturing Strategies

Biomaterial printing with cellulose-based materials

ST Medical Devices

Share this Article

NOVUM is sponsoring the Bioprinting vertical for 3DPrint.com’s upcoming AMS online industry summit (Feb 9-10, 2021). Additionally, Heli Kangas, Technology Manager for Biomass Processing and Products at the VTT Technical Research Centre of Finland Ltd., will be speaking at AMS 2021. Register here.

As the awareness of resource sufficiency, climate change mitigation and circularity of materials is increasing globally, many industrial sectors have turned their attention towards novel solutions for replacement of fossil-based materials. Cellulose as a nature-based, sustainable and versatile material is a potential replacement for many synthetic materials. In addition, cellulose has many unique inherent properties that makes it interesting for novel type of applications, beyond the obvious ones such as paper and board. However, when considering the combination of cellulose and additive manufacturing, one challenge is painfully obvious: cellulose is not thermoplastic by nature.

Cellulose-based material granules for 3D printing developed in the NOVUM project.

This challenge is currently being addressed in an EU funded project NOVUM, which targets at building a pilot line suitable for producing components from cellulose-based materials by additive manufacturing for diverse applications. During the project lifetime, the process will be demonstrated for electrical insulation, marine and automotive industries. For electrical insulation components, cellulose is a common raw material but the state-of-the art production method is rather inefficient in terms of labor, time, energy and waste generation. Additive manufacturing presents an appealing technology for boosting the process as well as enabling a process where molds are not needed. For marine industry, the use case would be something completely new – on-demand printing of outdoor decorative elements for cruise ships. For automotive industry the key motivation is the sustainability factor that replacing fossil-based materials with bio-based ones will significantly contribute to.

Small prototype of electrical insulation component for power transformed, 3D printed from the cellulose-based materials.

The thermoplastic cellulose-based materials developed in the project contain cellulose derivatives, cellulose powders and bio-based plasticizers. They have a higher cellulose content (up to 60%) than the commercial references but the material strength properties are at the same level or even better. The material properties can be tuned according to the requirements of the end use application by changing the components in the formulations, or the respective ratios of the various components. The materials have excellent printability using commonly available printing technologies such as Fused Deposition Modelling (FDM) or Fused Filament Fabrication (FFF), and are lightweight and have a smooth surface.

Lamp shade 3D printed from the cellulose-based materials by FDM.

Another interesting approach innovated in the project is printing of wood fiber foams in 3D shapes. With foam forming, it is possible to generate thick and bulky fibrous structures, which do not collapse upon drying, thanks to the porosity generated by the air. Production of 2D structures is an established technology but generation of structures in 3D required some innovation as processing without molds was desired. The most important research questions were related to mixing – how to generate homogeneous fiber-foam mix for printing, to foam chemistry – how to establish adequate binding between layers and to drying – how to minimize the drying time and energy of thick foams? The trials with an extruder-type of nozzle have been successful and the next step will be to study how a commercial printer can be adapted for printing fibrous foams. Potential applications for these type of components can be found in construction and transportation sectors as insulation materials, both for sound and vibration.

Design for the NOVUM pilot line.

This work has received funding from the European Commission Horizon 2020/SPIRE, proposal number: 768604, proposal acronym: NOVUM

Share this Article


Recent News

Customized Vehicles, On-Site Medical 3D Printing, and Green Lasers—All at TIPE 2022

Electronics 3D Printing: Analysis of Rogers Corp’s New Dielectric Material for AM



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: January 23, 2022

We’ve got plenty of webinars and events to tell you about in this week’s roundup: NAMIC and CASTOR are talking 3D printed parts identification, Carbon has a major announcement, HP...

3D Printing News Briefs, January 20, 2022: Metals, Fiber Batteries, & More

Starting with material news in today’s 3D Printing News Briefs, Velo3D has qualified a new superalloy for its Sapphire 3D printers. Equipment manufacturer PGV is saving time and money with...

Featured

AMS 2022 3D Printing Event: Early Bird Registration Ends January 19th

In less than two months, Additive Manufacturing Strategies, the 3D printing summit co-hosted by 3DPrint.com and SmarTech Analysis, will return as a hybrid event March 1-3, 2022. While last year...

$2M in Electronics 3D Printers Sold to Military Customer by Optomec

While we’re still not able to 3D print an entire iPhone at once, electronics 3D printing may be progressing more quickly than most people might notice. A pioneer in this...


Shop

View our broad assortment of in house and third party products.