Scientists working together from the Air Force Research Laboratory (AFRL) and Florida State University (FSU) are enjoy the benefits of collaboration, as well as reaping the rewards of discoveries in research and development that build on each other—leading from the use of one new technology to another. This includes innovation in materials and composites.
Dr. Amanda Schrand from the AFRL Munitions Directorate and Dr. Cheryl Xu (previously at FSU, but now working at North Carolina State University) began working together in 2016, studying new materials for the development of sensors and diagnostics.
AFRL signed a Joint Ownership Exclusive License agreement with FSU, allowing them licensed Air Force commercial rights, as well as permission for engaging in “fully exclusive” license agreements with other entities. AFRL also helped FSU and DOD Partnership Intermediary, TechLink, to market the resulting technology—ultimately licensed to Todd Huber, CEO of Nahsai, LLC, a Service-Disabled Veteran-Owned small business.
Over the years, the work between Schrand and Xu has centered around 3D printing at high temperatures, along with filling in some of the “gaps” in 3D printing.
The scientists discovered ceramic composites as an excellent solution for filling the natural materials gap, as well as being suitable for applications in defense environments; more specifically, Schrand and Xu created a novel method for 3D printing pre-ceramic polymer which could then be transformed at high temperatures (using pyrolysis) to form ceramic.
“This is a great enhancement to the powder material used in 3D printing,” said Dr. Xu. “The liquid polymer lends itself to many different, more advanced uses. 3D printing of liquid polymer precursor allows for creation of complex shapes and honeycomb cellular architectures. Examples of interest include and are not limited to, propulsion or thermal protection systems, leading edges of hypersonic vehicles, lightweight mechanical metastructures, microelectromechanical systems, etc.”
Enjoying the benefits of 3D printing, and the ability to customize hardware and materials, Schrand adds that one of the most surprising aspects in their research was the ability to take a basic off-the-shelf 3D printer and modify it for their needs in custom engineered materials printing.
The Nahsai team began working with Techlink regarding the patent for the new technology (jointly owned by FSU) and exclusive rights.
“This technology enables us to additively manufacture [3D print] ceramic composites with nano-scale fillers like carbon nanotubes and does so in a way that preserves many of the key property tailoring advantages of ceramics that come from polymers,” said Huber. “The technology leverages professional grade 3D printers but modifies them with open source tools and a few unique parts that can be custom printed with the printer itself. A key aspect is also use of high intensity ultraviolet light to cure the material as the system forms each layer of a product.
“The most surprising aspect of the technology has been the bridge it forms to other leading technologies,” Huber stated. “For example, the ability to consistently form very small and precise features with a family of compatible ceramic materials, enables us to now explore a number of metamaterial designs that could solve real challenges in extreme environment sensing.”
Nahsai is now immersed in the realm of materials, working with both commercial and defense customers running on strict deadlines—again, enjoying some of the greatest advantages in 3D printing with the ability to offer unique customization with rapid turnaround times. Products include:
- Flexible thermal seals
- Conformal antenna
- Embedded wireless pressure sensors
“Nahsai is working to help solve target applications in ultra-efficient energy, high performance mobility, and hypersonic sensing. Nahsai is still testing the limits of what can be done with this new product and is excited by the opportunities it represents,” states the AFRL press release.
The ongoing study of materials science continues in labs around the world, along with the creation of a wide range of new and helpful composites, from metal matrix to silver nanowire and even wood.
[Source / Images: Air Force Life Cycle Management Center]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Unpeeled: ORNL To Make 46 Tonne 410 Steel Additive Part
EOS is to make its M 290 in Pflugerville, Texas as well as in the US starting in Q1 2025. This is in response to a successful US government policy...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
3D Printing Webinar and Event Roundup: August 31, 2024
For the last webinar and event roundup of the summer, we have a variety of in-person and virtual options for you this week! There will be a Markforged FX20 demonstration...