Chinese researchers are experimenting with materials for bioprinting, outlining their findings in the recently published ‘Dual-Enzyme Crosslinking and Post-polymerization for Printing of Polysaccharide-Polymer Hydrogel.’
Tissue engineering, while yielding many successful and astounding efforts in research labs today—from the creation of a variety of hydrogels to scaffolds, to kidney organoids—is a complex area requiring much trial and error as cells can be considerably (and understandably) difficult to sustain. As hydrogels go, polymers are thought to be ideal by many because of their extracellular-matrix-like construction.
As with any material that offers great benefit, however, there are also drawbacks—and in this case, it usually points to a lack of strength and inferior properties. Seeking greater tunability for strength, the scientists used the HRP@GOx dual enzyme system in their study to ‘initiate the immediate crosslinking of chondroitin sulfate grafted with tyrosine and the gradual polymerization of monomers to form the composite hydrogels.’
Hydrogels are associated with many different tissue engineering applications today, including:
- Biocatalysis
- Biosensors
- Cell cultures
- Drug delivery systems
- Biomedicines
- Wound healing
- 3D printing
“In general, hydrogels formed by natural polysaccharides are suitable for 3D printing and encapsulating biomolecules. However, they generally have poor elasticity and weak mechanical properties. The covalently bonded crosslinked network (polymeric hydrogel) is elastically deformable, and still maintains strong mechanical properties (Sun et al., 2012; Zhang X. N. et al., 2018),” explained the researchers.
“However, they generally lack a suitable porous structure to diffuse biomolecules, and it is difficult to obtain a good viscidity window for extruded 3D printing, which are important factors in tissue-repair and 3D printing. An effective way to ensure these two advantages is to use a polysaccharide hydrogel in combination with a polymeric material.”
The scientific team employed two methods for creating composite hydrogels, using crosslinkable hydrogel (Gel I) and polymeric/crosslinked hydrogel (Gel II).
The composites for this research study were created in a ‘straightforward’ manner, and the scientists involved reported no need for added initiators, with the hydrogels structured by combining the mixing solution and keeping it at room temperature successfully.
Pointing out that composite hydrogels usually exhibit an adjustable strength from 3.29 to 86.73, the monomer conversion was found to be 95% via 1H-NMR.
“The mechanism analyses confirmed the immediate cross-linking at diluted solution and gradually polymerized reinforcement within viscous polysaccharide network,” concluded the researchers toward the end of their study. “Therefore, our polymer composite hydrogels have denser pore and nanoscale network relative to only polysaccharide hydrogels.
“With excellent biocompatible and mechanically adjustable abilities, the composite hydrogel is particularly interesting for 3D printing to fabricate precision structures for tissue repairing and tissue engineering.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Dual-Enzyme Crosslinking and Post-polymerization for Printing of Polysaccharide-Polymer Hydrogel’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners
Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
Emerging AM Technologies Analysis: Where Are They Now, Part 2
In March 2023, AM Research published the “Emerging AM Technologies Analysis: 10 Companies to Watch” report highlighting 3D printing companies with the potential to disrupt the additive manufacturing (AM) industry....