How Repeatable Workflows Allow Engineers to Automate and Optimize Designs

Share this Article

Advanced modeling platforms enable engineers to produce the highest-performing parts in the shortest amount of time

In the world of advanced manufacturing, a project’s path from beginning to end never follows a straight line. Parts need to be designed, tested, and redesigned, often requiring multiple iterations before they can finally hit the manufacturing floor. As a result, the process can slow innovation and require extensive low-value work.

Design engineers know all too well that many frustrating obstacles typically emerge when attempting to resolve more complex designs.  Though some pose as more of a showstopper than others, the biggest frustrations can include:

  • Having to redesign an entire model after one small parameter has been modified
  • Needing to utilize multiple software suites in order to complete a single idea-to-manufacture process
  • Manually iterating input parameters for a desired output, such as changing the density of a lattice until a target volume reduction is achieved 

Developers of advanced modeling platforms recognize that design-process issues such as these are quite commonplace when leveraging the power of new and evolving manufacturing systems such as additive manufacturing and precision CNC.  By implementing the appropriate modeling platforms—and supplement legacy authoring software with the capability for intelligent, repeatable workflows–engineers can start eliminating productivity losses related to redundant and low-value tasks. The significance of repeatable workflows becomes even more evident as throughput of higher-performing parts increases in contrast to past projects of lesser scale.

Today’s reinvented modeling platforms enable engineers to leverage very complex geometries, quickly iterate on designs, and automate common but demanding operations. These sophisticated, new systems integrate with data from any existing CAD, simulation, or manufacturing software package, allowing engineers to efficiently streamline their workflows in a repeatable and reliable manner.

Engineers have long been in need of a way to capture and share knowledge that allows them to innovate more quickly and automate trivial modeling tasks. Design operations such as filleting the interface between a lattice and its adjacent shell often demand the full attention of the engineer to manually select every edge.  With the repeatability and customization of a proven platform’s workflows, the process of blending these lattice beams to a structural solid can be developed once and leveraged endlessly. 

A constant fillet radius of 0.5mm applied to each connection between the lattice and exterior shell

By utilizing a unique and easy-to-use block-based tree to perform complex modeling operations, connected workflows can be created, with broad design parameters that can be defined as controllable inputs. Not only does a nested system allow for configuration and packageability, it is automatically responsive to changes in upstream design parameters and external inputs.

The level of configurability the software provides enables the designer to create and distribute robust algorithms that are capable of automatically running numerous design iterations to converge on an objective-oriented result. Design exercises such as lightweighting through topology optimization or lattice propagation allows a user to define their solution upfront.

Topology-optimization workflow running through design iterations for a bracket and an updated model

The resultant complex geometry seen above can be exported as a classic surface mesh (STL) or sliced directly in the platform, avoiding the need for additional software before manufacturing. This, too, is an example of a type of common repeatable workflow that today is not streamlined in the stack of traditional engineering design tools.  The most effective modeling platforms are architected to receive upstream changes and propagate them through the block system to produce a manufacture-ready model every time.

Optimized model ready to be 3D printed

A robust platform should include the ability to access prebuilt toolkits or configure repeatable workflows into toolkits that offer step-change advancements in the way engineers can collaborate across teams and organizations. The ability to lightweight components and generate complex geometries through rapid design iterations allows engineers to optimize part design faster than ever before.

By Sam Kratky, Application Engineer at nTopology.

Share this Article


Recent News

3D Printing News Briefs, September 7, 2024: Ceramics & e-Beam, 3D Circuits, & More

3D Printing News Unpeeled: ORNL To Make 46 Tonne 410 Steel Additive Part



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Aibuild Adds Hybrid Manufacturing Capabilities to 3D Printing Software

Nikon-backed Aibuild is startup that develops software tool for driving 3D printers. If you need a robotic arm printer designed for metal directed energy deposition (DED) or polymer extrusion, for...

EOS Expands U.S. Production with EOS M 290 Metal 3D Printer

German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....

3DPOD 216: Glynn Fletcher, EOS North America President

Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...