Ruggedized nScrypt Bioprinter Allows Military Personnel to 3D Print Medical Products in Remote Areas

Share this Article

The military has continued to embrace and advance 3D printing processes throughout the decades, long before most of us knew it even existed. Now, the Geneva Foundation and the Uniformed Services University (USU) 4D Bio3 Program—supporting the U.S. Military—has completed a pilot project centered around tissue engineering, but for a new type of atmosphere: the austere military environment.

A 3D bioprinted bandage

The goal is to fabricate medical products and further research into next-generation treatments for Warfighters engaged in field activities. While so many 3D printing benefits have been shown to be applicable to use in the military already—from maintenance of weapons in the field, to uniforms, and even food, replacement of tissues in isolated areas is a new concept—but certainly one of the most important for offering immediate care to the wounded or sick.

These types of next-gen treatments mean patient-specific care could be offered on-demand, while far away from any hospital or medical center. A new federally funded program, 4-Dimensional Bioprinting, Bio fabrication, and Biomanufacturing (4D Bio3), encourages further development of:

  • Advanced bioprinting
  • Bio fabrication
  • Biomanufacturing technologies for priority DoD research

The project was led by LTC Jason Barnhill at the United States Military Academy West Point, Department of Chemistry and Life Science.

Currently, 4D Bio3 manages several efforts, including 3D printing exercises in the desert—showing the potential for 3D printing and patient-specific care in outer regions and remote sites. The pilot includes a collaboration between nScrypt and RoosterBio, Inc., which has resulted in the Austere BioAssembly Tool (ABAT), a lightweight and ‘ruggedized’ bioprinter manufactured by nScrypt, and inspired by their work in 3D printing at the International Space Station.

The ABAT system offers:

  • A wide range of materials, including polymers
  • Electrical components
  • Biologics

So far, the following items have been created within the program:

  • 3D printed scalpel handle and hemostat – these tools were each printed within 1.5 hours and can be sterilized onsite to avoid infection in soldiers and other military personnel who may be wounded and require treatment in the field.
  • 3D printed bioactive bandages – involve fabrication of a hydrogel layer prepared with antibiotics, again to avoid infection, and protect wounds.
  • 3D printing of a surgical model of T9 vertebrae – acts as a model for helping doctors diagnose and treat musculoskeletal injuries

All the items were printed in a project led by LTC Jason Barnhill at the United States Military Academy West Point, Department of Chemistry and Life Science. The 3D printer and a host of supplies and raw materials were taken to a remote environment for the study, along with the RoosterBio Ready to Print (RTP) human mesenchymal stem/stromal cells (hMSCs). The manufactured cells were created to both ‘simplify and standardize’ some of the most difficult and time-consuming elements of 3D printing and more specifically, bioprinting.

“This technology enables austere printing in a resource-limited setting as they are the only cells that allow for same-day bioprinting capabilities,” states a press release sent to 3DPrint regarding the project.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[L to R: Joel Gaston (4D Bio3, Geneva), John Getz (RoosterBio, Inc), LTC Jason Barnhill (United States Military Academy), Vincent B. Ho, (4D Bio3 Director, USU), Ken Church (nScrypt), Kelli Blaize-Wise (4D Bio3, Geneva), Linzie Wagner (4D Bio3, Geneva)]

[Source / Images: nScrypt]

Share this Article


Recent News

Cartilage Tissue Engineering via Characterization and Application of Carboxymethyl Chitosan-Based Bioink

University of Sheffield: Comparative Research of SLM & EBM Additive Manufacturing with Tungsten



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Barcelona: Electrostatic Jet Deflection for Ultrafast 3D Printing

Barcelona researchers Ievgenii Liashenko, Joan Rosell-Llompart, and Andreu Cabot have come together to author the recently published, ‘Ultrafast 3D printing with submicrometer features using electrostatic jet deflection.’ Following the continued...

Cornet: Research Network in Lower Austria Explores Expanding 3D Printing Applications

Ecoplus Plastics and Mechatronics Cluster in Lower Austria has just completed their ‘AM 4 Industry’ Cornet project, outlining their findings regarding 3D printing—with the recently published work serving as the...

Additive Manufacturing: Still a Real Need for Design Guidelines in Electron Beam Melting

Researchers from King Saud University in Saudi Arabia explore the potential—and the challenges—for industrial users engaged in metal 3D printing via EBM processes. Their findings are outlined in the recently...

Metal 3D Printing Research: Using the Discrete Element Method to Study Powder Spreading

In the recently published ‘A DEM study of powder spreading in additive layer manufacturing,’ authors Yahia M. Fouda and Andrew E. Bayly performed discrete element method simulations to study additive manufacturing applications using titanium alloy (Ti6AlV4)...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!