In the recently published ‘Accurate Congenital Heart Disease Model Generation for 3D Printing,’ researchers explore 3D printing for diagnosis, treatment, and planning in congenital heart disease (CHD) patients. CHD usually presents itself at birth and can be difficult to analyze, even with 3D medical images—and despite many different studies by scientists around the world. The researchers note that 3D printing has been ‘widely adopted’ in clinical settings lately, offering for improvements in the following:
- Clinical decision making
- Interventional planning
- Communication between physicians and patients
- Improving medical education
In the dataset for this research, combining deep learning and graph matching for whole heart and great vessel segmentation in CHD, patients ranged in age from one month to 21 years old—while most were from one month to two years old. Out of 16 cases, the study covers 14 types of CHD to include the most common 8, which are atrial septal defect (ASD), atrio-ventricular septal defect (AVSD), patent ductus arteriosus (PDA), pulmonary stenosis (PS), ventricular septal defect (VSD), co-arctation (CA), Tetrology of Fallot (ToF), and transposition of great arteries (TGA).
The researchers explain that there has already been a prolific amount of research using the multi-modality whole heart segmentation method, with ‘state-of-the-art performance’ found in combining 3D U-net for segmentation and a simple convolutional neural network for label position prediction. Another technique involves using the basic simple convolutional neural network for label position prediction, while another handles blood pool and myocardium in blood pool segmentation.
“Considering the significant variations in heart structures and great vessel connections in CHD, almost all the existing methods cannot effectively perform whole heart and great vessels segmentation in CHD,” state the researchers.
Motivated instead by the promise of graph matching, they used deep learning and graph matching, collecting 68 CT images overall, with an 11.9 percent higher Dice score. The framework consisted of:
- Region of interest cropping
- Chambers and myocardium segmentation
- Blood pool segmentation
- Chambers and myocardium refinement
- Graph matching
Segmentation results were printed on a Sailner J501Pro for evaluation—a process that took the researchers about three to four hours. The researchers assessed the 3D printed model as correct, and with clear shape and connections, with minor refinements necessary such as thin coronary vessels.
“We also printed out part of the segmentation results with minor manual refinement and showed that it can be applied to clinic use,” concluded the researchers.
3D printed models have proven to be more than just helpful in many different areas of the medical realm, especially as they are able to offer so much in terms of education not only for students but also for patients and their families, as well as helping in the preoperative stages—and during the actual operation too with surgical planning models.
[Source / Images: ‘Accurate Congenital Heart Disease Model Generation for 3D Printing’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Metal 3D Printing Supplier Continuum Powders Opens North America’s “Largest” Site for Sustainable Metal Powder Production
Continuum Powders, a supplier of metal powders made from recycled materials and used for additive manufacturing (AM), has announced the opening of its new global headquarters, in Houston, Texas. The...
3D Printing Webinar and Event Roundup: November 17, 2024
It’s a big week in the AM industry: Formnext 2024 is finally here! But don’t worry if you can’t make it to Germany, there are still a few other virtual...
AM Summit 2024 Focuses on Sustainable 3D Printing
I was excited to travel to Copenhagen, Denmark recently to attend Scandinavia’s largest additive manufacturing (AM) conference, the AM Summit, put on by the Danish AM Hub. This was the...
3D Printing Webinar and Event Roundup: October 27, 2024
This week, Stratasys and Würth Additive Group continue their tours, and ICAM 2024 takes places in Atlanta, Georgia. Other offerings include an AM Symposium, webinars about 3D printing dental implants...