Bioprinting: What are the Legal Implications of Defective Design Software?

Share this Article

3D printed models of hearts (Photo credit: Alphr)

3D printing has taken off at lightning speed, with innovations emerging around the world continually—and virtually unregulated. While there may be some serious discussions and expectations regarding ownership and common sense regarding designs, most of the legal angles are still in the embryonic stages. And that brings us to tissue engineering. Jamil Ammar tackles a provocative subject that has the potential to become much more complex over the years, in ‘Defective Computer-Aided Design Software Liability in 3D Bioprinted Human Organ Equivalents.’

The creative aspect of 3D printing is one important part of potential intellectual property rights, but in relation to legalities, there are serious liabilities that could be connected to defects in bioprinting. Ammar leads us through the process of bioprinting, from CAD software design to CAD designs to scanning of organs, and the eventual bioprinting of such complex tissue. While there are still so many challenges to overcome before actual organs are created and implanted in humans, worrying about the legalities may seem like jumping the gun; but Ammar does bring up important issues regarding the ‘what ifs’ surrounding software or a design that could be defective.

“In the medical 3D bioprinting field, three theories are, in principle, relevant to the protection of the patient against injuries that are attributable to defective CAD software: (i) medical malpractice (a subset of negligence law), (ii) breach of warranty under the Uniform Commercial Code (UCC), and (iii) strict liability,” states Ammar. “None of these theories, however, adequately address the range of injuries that could potentially arise due to use of defective CAD software.”

In this study, Ammar that there are concerns and confusion regarding the definitions and roles of:

  • Software developers
  • Fabricators
  • Manufacturers
  • Products v. services dichotomy

The products v. services topic relates to whether computer software can be the subject of a product liability case. While courts may have not been ready to extend liability to software, Ammar reminds us that manufacturers can still be considered liable. He goes on to define OED’s as Organ Equivalent Devices which is a nifty term that does indeed remind us of the stakes.

“Product liability is a critical policy issue in the field of 3D bioprinting. It is necessary to reconsider the premise that software developers, especially in a healthcare setting, are not intrinsically subject to strict liability rules in relation to the software they provide,” states Ammar.

He also points out that the ‘extensive immunity’ afforded to the 3D printing set is not appropriate, considering the content and the potential for harm to medical patients.

“Liability regimes currently consist of a collection of different legal systems that do not properly fit the needs of OED manufactures due to the fact that OED bioprinting combines both products and services,” states Ammar. “Healthcare professionals, medical device manufacturers, and medical software developers have, traditionally, been clearly separated; this is no longer the case, particularly when OED design and bioprinting are carried out by the same entity.”

Liability could potentially fall on medical professionals using CAD files, and developers of the files who write CAD programs but do not use personally use them. While bioprinting may not be ‘addressed’ by the FDA, obviously items that could be placed into the human body must be deemed completely safe by someone. Approval may be hard to give when bioprinted tissue has barely been categorized. Transplants are overseen by the Health Resources Services Administration (HRSA), but because OEDs are not yet specifically classified, regulations cannot be solidified.

There is also further gray area between the term developer and manufacturer:

“Given the undisputed impact of the CAD software, should the producer of the CAD print file (CAD user) be considered as the manufacturer or semi-manufacturer of the OED? The FDA defines a manufacturer as ‘any person who designs, manufactures, fabricates, assembles, or processes a finished device,” states Ammar. “The term ‘manufacturer’ includes, but is not limited to, those who perform the functions of ‘contract sterilization, installation, relabeling, remanufacturing, repacking, or specification development, and initial distributors of foreign entities performing these functions.”

Ammar asks how CAD users should then be viewed; after all, they are involved in the bioprinting process. Detecting and defining defects is another huge issue. Who is responsible for said defect follows that question, along with the reminder that hospitals are historically not in the business of distributing ‘products,’ so who is liable when things go terribly wrong for the patient with a bioprinted implant? Ammar points out that the hospital medical personnel are most likely going to be responsible for performing the bioprinting. While 3D printing is a disruptive technology, legal disruptions may not be what technological revolutionaries had in mind.

Bioprinting CAD files in breast cancer studies (Photo credit: ‘Engineering Breast Cancer Microenvironments and 3D Bioprinting’)

“Effective 3D OED bioprinting offers the promise of bridging the current shortage of donor organs, thus enhancing patient quality of care. Creating a streamlined approach to assessing the requirements of effective, reliable, and high-quality CAD software is an important first step,” says Ammar, who proposes a new approach for handling defective CAD software—by allowing consumers to launch tort action against CAD developers.

“The strict liability regime offers several advantages relative to negligence and/or malpractice regimes, which can be utilized to enhance patient safety. The proposed approach avoids the nearly impossible task of proving a breach in standard of care, allowing stakeholders to benefit from clearer and lower evidentiary standards,” concludes Ammar. “Equally significant, the cost factor of our proposal does not, in principle, lead to an overreliance on technology, which would risk defective outcomes or a reduction in the creation of would-be optimal solutions.”

Legal concerns related to 3D printing have not only advanced, but they have expanded immensely in the past few years. While copyrights are an enormous concern—and have caused trouble major headaches for some users—legal implications are coming to the forefront more often. On the flip side, 3D printing is often used to help in legal situations, with 3D printed models even used in murder trials. Learn more about emerging legal details and liability in bioprinting here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Hydrogels used in bioprinting. (Photo: ReliawireBioPrinting 101)

[Source / Images: ‘Defective Computer-Aided Design Software Liability in 3D Bioprinted Human Organ Equivalents’]
Facebook Comments

Share this Article


Recent News

3D Printing Being Combined with Soldering to Create High-Performance Zeolites

Interview with Hexcel on PEKK for 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Additive Manufacturing and 3D Printing in 2019

Additive manufacturing is changing the world. Another term for 3D printing, additive manufacturing differs from other forms of manufacturing in that, rather than removing material like machining, it adds material...

Tunisia: Researchers 3D Print Optimized Car Leaf Spring out of Carbon PEEK

Authors Amir Kessentini, Gulam Mohammed Sayeed Ahmed, and Jamel Madiouli have performed research and analysis after 3D printing a car part, with their findings outlined and recently published in ‘Design...

PEEK, PEKK and ULTEM May Just be the 3D Printing Thermoplastics You Need in Your Life

There was definitely life before plastics, but today we can’t imagine living without them. Before they were even invented (the first synthetic polymer was developed in 1869 by John Wesley...

Sponsored

Roboze Argo 500 Sets the Standard for the Production of Large Scale Finished Components with High Temperature and Composite Polymers

Bari, Italy With its new Argo 500, Roboze aims to become the leader in the large-scale 3D printing industry with high performance plastics. The Argo 500 is the result of constant...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!