SEArch+ and Apis Cor Take Top Prize in Latest Level of NASA’s 3D Printed Habitat Challenge

Share this Article

[Image: Team SEArch+/Apis Cor]

Since NASA’s 3D Printed Habitat Challenge began, it has been fascinating to follow the competition as it moves through its multiple levels and phases. At its inception in 2014 the competition, asked participants to work towards designing habitats that could be 3D printed using materials found on Mars. The competition is structured in three phases. Phase 1 was the Design Competition, which required teams to submit architectural renderings. Phase 2, the Structural Member Competition, asked teams to 3D print actual structural components such as cones and cylinders as well as beams and domes.

[Image: Pennsylvania State University]

Phase 3 is the On-Site Habitat Competition, which is currently taking place. It has five sub-levels: three construction levels and two virtual levels. Level 1 was a virtual level that had teams using design software to illustrate their concepts for full habitats. Level 2, which just concluded, was a construction level that asked teams to 3D print one of the most important parts of any structure – the foundation slab.

The 3D printed slabs were evaluated and scored using multiple criteria like strength, durability and material composition. To test their strength, a standard Olympic shot put was dropped on each slab three times to simulate a meteor strike. To test durability, the slabs were subjected to freeze/thaw tests that simulated the temperature extremes that would be found on Mars.

The winner of this round was Team SEArch+/Apis Cor. SEArch+, or Space Exploration Architecture, is a New York-based firm that has been working for a decade with NASA’s Johnson Space Center Human Habitability Division and Langley Research Center to develop ideas for human habitation on Mars. In 2015, its Mars Ice House concept won first place in Phase 1 of the competition. The beautiful, surreal design relied on 3D printed subsurface ice to create a translucent structure.

Apis Cor is a Russian company that was the first to develop a mobile 3D printer that can print buildings entirely on site. Last year, the company claimed to have 3D printed a house in 24 hours and used multiple advanced technologies to furnish the inside, offering a glimpse of what the homes of the future may look like. The mobile 3D printer was used to print the thick foundation slab required for this level of the competition.

[Image: Team FormForge|Austin Industries|WPM]

The slab performed well in all of the tests it was subjected to. In a way, this level showed, more than any before, the true potential of 3D printing technology to actually build structures that can stand up to Mars’ harsh conditions.

“This level prepares the teams for more difficult levels to come, and they had to do it autonomously, which adds an extra level of difficulty that will be necessary for space exploration,” said Monsi Roman, program manager for NASA’s Centennial Challenges. “Each of the skills tested in these levels will come into play for the final competition next spring.”

Team SEArch+/Apis Cor was awarded $55,154.77 for winning first place in this level of the competition. Second place, with a prize of $32,914.75, went to Pennsylvania State University, while third place and $31,930.48 went to Team FormForge|Austin Industries|WPM. The total amount of prize money for this level was $120,000.

Subsequent levels will involve 3D printing other elements of the habitat; the competition will culminate in 2019 with a final level that requires a one-third scale level 3D print of the entire habitat.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Share this Article


Recent News

Blueprint Launches Technology Enablement Program—Brings Greater Knowledge to 3D Printing Users

MIT: A New Fiber Ink With Electronics Embedded Inside



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TU Delft Researchers Create Soft Robotics that Respond to Color-Based Sensors

As 3D printing and robotics continue to collide and complement each other, new machines are being created. In soft robotics, we’re seeing the emergence of a class of machines that...

MIT: Automated System Designs and 3D Prints Optimized Actuators and Displays to Spec

Actuators are complex devices that mechanically control robotic systems in response to electrical signals received. Depending on the specific application they’re used for, today’s robotic actuators have to be optimized...

Using Casting, Graphene, and SLM 3D Printing to Create Bioinspired Cilia Sensors

  What Mother Nature has already created, we humans are bound to try and recreate; case in point: biological sensors. Thanks to good old biomimicry, researchers have made their own...

Nanyang Technological University: Inkjet Printing of ZnO Micro-Sized Thin Films

In ‘Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices,’ thesis student Van Thai Tran, from Nanyang Technological University, delves into the realm of fabricating products with conductive...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!