RAPID

NASA Announces Winners of First Part of Phase Two in 3D Printed Habitat Challenge

Eplus 3D

Share this Article

Two years ago, NASA issued a challenge: 3D print viable habitats that people can potentially live in on Mars, the moon, or elsewhere in the future,  using locally available materials. The 3D Printed Habitat Challenge, co-sponsored by Bradley University, is composed of three phases, the first of which concluded in September. Shortly after that, NASA began accepting registration for Phase Two, which in itself is broken down into three sub-levels. Level One concluded at the end of March, and a few days ago, NASA announced the winners of this stage.

$100,000 was awarded to the two top-scoring teams in Level One, based on a point system. $85,930 was awarded to a team composed of Branch Technology and Foster + Partners, while $14,070 went to the University of Alaska Fairbanks. Level One, the Compression Test Competition, required that participants 3D print two structures: a truncated cone and a cylinder. The structures were then subjected to several lab tests to determine the winners.

Cone structure 3D printed by Branch Technology and Foster + Partners [Image courtesy of Branch Technology/Foster + Stearns]

Branch Technology has become well-known for their pioneering Cellular Fabrication Technique, which they’ve used to build strong, lightweight structural walls using a giant freeform 3D printer. The company has sponsored 3D printed home-building competitions of their own, and recently participated in a project involving a futuristic 3D printed dronopod in Knoxville.

“Seeing tangible, 3D-printed objects for this phase makes the goals of this challenge more conceivable than ever,” said Monsi Roman, program manager of NASA’s Centennial Challenges. “This is the first step toward building an entire habitat structure, and the potential to use this technology to aid human exploration to new worlds is thrilling.”

While the competition is publicized as being for the purpose of developing outer space habitats, the technology the teams come up with may very well end up being used for housing on Earth as well. The focus on using locally available materials means that buildings could conceivably be 3D printed in remote areas where access to conventional building materials and equipment are limited.

“Innovation is a key focus of Bradley University which is one of the many reasons we are so very proud to be a part of the 3D-Printed Habitat Challenge with NASA,” said Bradley University President Gary Roberts. “The winners of Phase 1 and this first stage of Phase 2 are to be commended for their innovation in creating a solution that will fit not only in our world but beyond. I look forward to the next phase and seeing teams work to advance critical systems needed for human space exploration like never before.”

A 3D printer created by the University of Alaska team prints a cone [Image courtesy of University of Alaska]

The other teams participating in this stage of the challenge included:

  • Bubble Base of Winston-Salem, North Carolina
  • Pennsylvania State University of University Park
  • CTL Group Mars of Skokie, Illinois
  • ROBOCON of Singapore
  • Moon X Construction of Seoul, South Korea

The teams will now move on to the second stage of Phase Two, which will involve 3D printing a beam for testing. Phase Two, overall, is focused on the material technologies needed to create structural components, while Phase Three, the On-Site Habitat Competition, will center on fabrication technologies. Discuss in the NASA forum at 3DPB.com.

[Source: NASA]

 

Share this Article


Recent News

Stratasys Rejects Acquisition Offer from Nano Dimension

3D Printing News Briefs, March 22, 2023: Carbon Sequestration, 3D Printed Bird Drones, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Systems Announces Partnerships with 6K and TE Connectivity

Additive manufacturing (AM) sector leader 3D Systems has announced two new partnerships, each involving another American manufacturing company. One of the partnerships, with TE Connectivity — a major producer of...

University of Arizona Gets $1.2M for Hypersonics 3D Printing

Hypersonic glide vehicles will need to resist incredible heat and pressure from flying at Mach Five and above. For that reason, the materials used to make them will likely be...

Featured

SmarTech Releases First Report on Emerging 3D Printing Technologies and OEMs

Key technologies like 3D printing are among the driving forces behind digital transformation in manufacturing. Today, additive manufacturing (AM) platform options go beyond the two historically dominant and pioneering players...

3D Systems Re-enters Desktop Dental 3D Printing with NextDent LCD1 System

Given that the dental additive manufacturing (AM) sector is currently the most mature, the competition for increasingly cutting-edge tools is heating up. Firms across the segment are demonstrating these new...