It seems like just about every day, we’re learning of new 3D printing innovations in the medical field, from prosthetics and pharmaceuticals to anatomical models, surgical guides, and implants. But none of these can get very far in the market, and into the hands of the doctors and patients who need them the most, without receiving the very important stamp of approval from the US Food and Drug Administration (FDA).
The agency has to take many factors into account when deciding if a product or device is safe to use – it’s not an easy job, and the FDA often asks for feedback and publishes guidance regarding 3D printing. Still, not everything gets that necessary approval to move forward, so when companies do receive clearance, it’s a big deal.
Early stage orthopaedic company Additive Orthopaedics, LLC is on a mission to integrate biologics (biopharmaceuticals) and advanced manufacturing, in order to ensure a better outcome for the patient. The company is a leader in the 3D printed orthopaedic foot and ankle device market, and received FDA clearance for its first product, a 3D printed titanium digital fusion implant, in the summer of 2016. A month later, the FDA granted Additive Orthopaedics clearance for its 3D printed hammertoe implants, and soon after for its 3D printed osteotomy wedge system, which address bone fractures and osteotomies in the ankle and foot.
By June of 2017, the young company, which only launched its first commercial product line a year ago, received 510(k) clearance from the FDA for a fourth 3D printed device – the intermedullary, minimally invasive Bunion Correction System, which includes a 3D printed implant meant to align and stabilize bunions.
In its short history, Additive Orthopaedics has seen over 1,000 of its devices implanted, and has also developed and patented multiple design structures, which are only possible thanks to 3D printing, that are used in its current and future products. These include its AddBone implant surface technology, Biologic Interface, and its Variable Honeycomb Lattice (VHL) design, which is optimized to allow enhanced bony in-growth throughout the implant structure while remaining strong.
Now, Additive Orthopaedics is sharing more good news – it has received FDA 510(k) clearance for its Patient Specific 3D Printed Bone Segments for the global extremities market.
“This is a tremendous milestone for orthopaedics and the obvious trend towards patient specific 3D printed implants,” said Greg Kowalczyk, the President of Additive Orthopaedics. “In cases of implant revision, limb salvage, and trauma, often there are no clinically available devices to address the patient’s condition. This is where 3D printed patient specific implants are making significant clinical impacts.”
The company’s Patient Specific 3D Printed Bone Segments were developed to address internal bone fixation in the feet and ankles, which requires surgery to internally set and stabilize fractured bones.
“Our lattice structures are proving to be the next generation design as opposed to the older, more open, types of structures that rely on biologics for osteosynthesis,” explained Brian McLaughlin, the Vice President of Engineering and Operations at Additive Orthopaedics. “In several patients, our lattice structures have shown close to 90% boney in-growth after 6 months using no biologics. We are excited to now offer these as patient specific solutions.”
In other company news, Additive Orthopaedics also closed a $1 million Series B round of financing recently.
Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Images: Additive Orthopaedics]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...
3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing
Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...
3D Printing News Unpeeled: Filtering PFAS, Solid Knitting & Holographic Direct Sound Printing
A Carnegie Melon University (CMU) researcher has been working on solid knitting for over a decade. Yuichi Hirose has now made a new solid knitting machine that he hopes will...
An Intertwined Future: 3D Printing Nanocellulose
Nanocellulose is an exciting new group of materials that could be widely used in manufacturing. Nanocellulose, also called nano cellulose, cellulose nanofibers (CNF), cellulose nanocrystal (CNC), and microfibrillated cellulose (MFC),...