When you’ve left your car in the sun all day, unless you were lucky enough to find a parking spot under a tree, getting back in and sitting inside immediately leads to feeling enveloped in an intense, stifling heat. But researchers from the University of Delaware may have found a solution, with their prototype windows that can switch from clear to reflective just by adding a liquid. The technology could be used not only to keep your car cool under the sun, but also for roof panels that keep houses warm in the winter and cool in the summer, and to make energy-efficient office buildings.
Switchable glass, which uses applied voltage to change from opaque to clear, is available, but at $100 per square foot, it’s not exactly a wallet-friendly option. But by combining smart technology with 3D printing, which has been done with mirrors and other products, the researchers developed an inexpensive, easy to manufacture prototype smart glass, made of a 3D printed plastic panel covered by a thin chamber. The panel has a pattern of retroreflective structures, which means the light reflects back to the direction it originally came from. These structures become transparent when the chamber is filled with fluid methyl salicylate, which matches the plastic’s optical properties.
“We expect our smart glass to cost one tenth of what current smart glass costs because our version can be manufactured with the same methods used to make many plastic parts and does not require complicated electro-optic technology for switching,” Keith W. Goossen with the University of Delaware said.
“Although we had to develop new ways to process 3D printable plastics with good optical performance, develop inexpensive refractive index-matching fluids and come up with highly reflective optical structures, the innovation here is mostly in recognizing that such a simple concept could work.”

Operating modes of variable transmittance device, (left) air – reflective, (middle) water – diffuse transmittance, (right) index matched – specular transmittance.
Goossen and fellow University of Delaware researcher Daniel Wolfe published a paper on their prototype in the Optical Society journal Optics Express, titled “Evaluation of 3D Printed Optofluidic Smart Glass Prototypes.” They used a Stratasys Objet30 Pro 3D printer to manufacture the plastic panels, complete with repeating retroreflective structures, for their switchable smart glass prototype, out of Stratasys’ transparent 3D printing photopolymer VeroClear.
“Without 3D printing, we would have had to use a molding technology, which requires building a different mold for every different structure. With 3D printing, we could easily make whatever structure we wanted and then run experiments to see how it performed,” said Goossen. “For commercial production, we can use standard injection molding to inexpensively make the retroreflective panels.”
The researchers also developed post-processing steps for the panels, which were constructed in varying sizes for testing purposes, to make sure that the plastic would stay highly transparent, and exhibit accurate corners, after printing was complete; both of these qualities are necessary for the structures to attain retroreflection.
“Prototyping the corner cube on the 3D printer indicated the optimum size was with a side wall of 4 mm,” the paper reads. “As the geometry reduces in size, printing defects increase and resolution decreases.”
The repeating structures were put through optical testing in order to find out if underlying characteristics, like the material’s light absorption or surface roughness, would cause any unexpected issues; luckily, the researchers were able to determine through the tests that the retroreflective structures worked just as they should. In addition, they demonstrated that their smart window prototype could stand up under thousands of cycles, switching back and forth from reflective to transparent, without any signs of degradation. However, they also determined that a little of the fluid stays on the structure, and they are now developing coatings to help the fluid drain off without leaving residue.
“To further demonstrate the technology’s usefulness as switchable glass, we are building an office door that incorporates the new smart glass as a switchable privacy panel. These types of panels are currently made with much more expensive technology. We hope that our approach can broaden this and other applications of smart glass,” said Goossen.

Prototype smart glass is retroreflective (left) and becomes clear (right) when a liquid with similar optical properties is pumped into a chamber in front of the structure. [Image: Keith Goossen, University of Delaware]
Goossen said, “You can’t use today’s commercially available switchable glass for this application because in the darkened state the windshield still absorbs sunlight and becomes hot. Because our glass is retroreflective in the non-transparent state, almost all the light is reflected, keeping the glass, and thus the car, from getting hot.”
The retroreflective glass could also be used to reduce a skyscraper’s contribution to city warming, because it can direct light back up to the sun and not down to the street. In addition, the inexpensive, plastic retroreflective panels can also be used to build switchable roofs to reduce heating and cooling costs for homes in areas that are sunny all year long. However, since the fluid methyl salicylate used in the prototype smart window could freeze in temperatures less than 16°F, freeze-resistant fluids would need to be developed.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: The Optical Society]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Biden Admin Announces Flurry of Reshoring Actions, Including Council on Supply Chain Resilience
Yesterday, I posted about the over $6 billion in new funding for US advanced manufacturing related to batteries and semiconductor packaging announced by the Biden administration to be awarded in...
Biden Admin Announces Over $6 Billion in Funding for Battery and Chip Advanced Manufacturing in November
In a development that has become routine for the Biden administration, the White House announced a total of more than $6 billion in new funding opportunities for advanced manufacturing applications...
America Makes and NCDMM Funding Now Tops $729M for American 3D Printing and Beyond
In a significant move to advance the U.S. manufacturing sector, the National Center for Defense Manufacturing and Machining (NCDMM) and America Makes have recently announced substantial ceiling increases on their...
US Army Reserve Test 3D Printed Explosives
In October 2023, US Army Reserve Soldiers assigned to the 102nd Training Division (Maneuver Support) attended a two-week Combat Engineer Reclassification Course at Fort Leonard Wood in Missouri, where they...