There have been many homemade and DIY 3D printers – even 3D printers made from a dot matrix printer, e-waste and recycled components – but I think the 3D printer constructed by Italian maker Michele Lizzit is the first one I’ve seen that has cardboard biscuit boxes supporting the entire structure. Of course, they don’t make up the whole printer: the 18-year-old, who’s a student at the Liceo Scientifico Copernico in Udine, scavenged the parts from a flatbed scanner and three inkjet printers to build his own operational 3D printer.
It only cost Lizzit €10 to build the closed loop 3D printer – almost everything was able to be salvaged from scrap. He also created some open source firmware for the printer, which is available on Github.
“Inkjet printers are incredibly cheap and most printers do not last more that a few years before the inkjet nozzle breaks or the paper loading mechanism starts to fail; as a consequence lots of broken inkjet printers can be easily obtained in junkyards or from friends,” Lizzit explained.
While the printer certainly doesn’t look very pretty, Lizzit said it has a print resolution of 33 microns on both axes, and that soon-to-come firmware will let the printer choose the proper temperature for a filament, auto-clean a clogged nozzle, and compensate for filament slipping on its own. He also plans to improve the z-axis and build a solid metal frame for the printer, as the cardboard, while offering great print adhesion on top of a scanner’s plastic plate, “adversely affects print precision.”
The only parts he had to purchase were a motor driver and three driver boards, an ATmega328 processing brain, a high-current transistor, and a hotend extruder, none of which cost more than €4. He used a standard desktop machine to 3D print the housing for the extruder, and used an inkjet printer’s paper loading mechanism instead of sourcing a hobbed bolt.
As Lizzit explains, every inkjet printer has one axis that’s similar to what a 3D printer needs – with the exception that most inkjet printers no longer use stepper motors. Instead, they use a cheaper DC motor, combined with a linear optical encoder; the data from the coder is interpolated while the motor runs at full speed, and this triggers the nozzles.
Some of the advantages to Lizzit’s unique printer design include closed loop control, which knows where the axis is so you don’t lose hours of printing time if the stepper driver overheats and goes into thermal protection mode, which throws off the firmware. Additionally, the printer does not require calibration – just input the resolution of your encoder strip into the firmware configuration file. Another plus is the DC motor in inkjet printers – when they’re not moving, they’re not powered, unlike stepper motors. This helps reduce the printer’s total power consumption. The printer also doesn’t need as much maintenance, due to its lack of a hobbed bolt, which needs periodic cleaning.
According to Lizzit, “The main purpose of this experiment/printer was to demonstrate that it is possible to reach a reasonable precision using linear encoders from old inkjet printers.”
Lizzit has added the build instructions for his inexpensive printer to his website, though obviously the first step is to disassemble the existing inkjet printers. He said all you need to build a similar printer is the following:
- 3 inkjet printers and a scanner (or a multifunction printer)
- a hotend (€4)
- an ATmega328 (or an Arduino nano) (€1.50)
- an L298 or L298-based motor driver (€1.50)
- 3x A4988 driver boards (€3)
- a BDX53 or other suitable high-current darlington transistor (<€1)
Once the printer is put together, you’ll need to connect everything to the Arduino and upload the firmware.
Lizzit said, “Be careful not to run too much current on the breadboard traces (if you are using a breadboard), at least part of the circuit has to be soldered on a protoboard. Exceeding the specifications is not a good idea, I realized that when, while developing the printer, I have accidentally run 8 amps through the breadboard and my bedroom (which is where I currently hold the printer) started all smelling of charcoal and burnt plastic…”
Then, just connect to the printer with Pronterface, or any other 3D printer host software. Discuss in the Student-Created 3D Printer forum at 3DPB.com.
[Source: New Atlas / Images: Michele Lizzit]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Canadian 3D Printing OEM Mosaic Pulls in Over $20M in Latest Financing Round
Mosaic Manufacturing, the Toronto-based original equipment manufacturer (OEM) of fused filament fabrication (FFF) 3D printers, has closed a CAD$28 million (~$20.72 million US) financing round led by Idealist Capital. Idealist...
3DPOD 218: AM Polymers with Dr. Krysten Minnici, Arkema
Dr. Krysten Minnici is a scientist who now works in business development at Arkema. In this episode, we discuss PEKK, PAEK, polymers, powder bed fusion materials, recycling rates, 3D printing...
Decentralized Manufacturing Network 3DOS Launches 3D Printing Partnership with Blockchain Platform Sui
3DOS, a decentralized additive manufacturing (AM) network based in Silicon Valley, has announced a partnership with Sui, a Layer-1 blockchain and smart contract platform. 3DOS’s partnership with Sui leverages the...
Artec 3D Releases Two New 3D Scanners at IMTS 2024
Artec 3D, the US-Luxembourg original equipment manufacturer (OEM) of high-resolution 3D scanners, has released two new products at the International Manufacturing Technology Show (IMTS) in Chicago (September 9-14). First off,...