Exone end to end binder jetting service

NASA Researchers Devise Method for Real-Time In-Situ Additive Manufacturing Inspection

INTAMSYS industrial 3d printing

Share this Article

NASA has made a wide range of forays into 3D printing—and for decades now. From 3D printed rocket engine parts that will pave the way for creating future components to continued efforts for developing 3D printed habitats on Mars, NASA has been and continues to be involved in advancing 3D printing technology.

Now, NASA engineers are getting involved in improving the 3D printing process itself, rather than just impressing us with what they are creating with the technology. Monitoring while printing has become a feature expected by savvy users today, especially from the desktop. But what about industrial processes—where often more is on the line in terms of material and product? Thanks to NASA, monitoring may soon be expanded further for additive manufacturing. This will allow for more opportunity to correct AM processes in real time, with the obvious benefits of less waste in materials and energy, and greater expediency overall. Users are able to pause the prints and make corrections as needed.

Interim inspection improves the quality of parts with intricate internal features like these fuel channels.

With the creation of a method for in situ dimensional inspection of AM parts, researchers at NASA Marshall Space Flight Center offer helpful technology for inspecting internal features like fluid channels and passages—areas that are difficult to check after printing. According to NASA, it also means the potential is there for including a closed-loop feedback system to make automatic corrections. The monitoring system employs cameras that are both visual and infrared, allowing the user to see the print in progress.

The IR cameras collect temperature data needed for validating thermal math models, and the visual cameras collect details for constructing precise models. This new technology will also reduce false positive readings.

Samples created through both laser-sintered plastic and metal processes have been tested by the NASA team:

“The technology detected errors due to stray powder sparking and material layer lifts. Furthermore, the technology has the potential to detect anomalies in the property profile that are caused by errors due to stress, power density issues, incomplete melting, voids, incomplete fill, and layer lift-up,” stated NASA. “Three-dimensional models of the printed parts were reconstructed using only the collected data, which demonstrates the success and potential of the technology to provide a deeper understanding of the laser-metal interactions.”

The monitoring system offers increased flexibility as it can be implemented in existing systems with reduction in time, energy, and waste for parts that are nonconforming. The IR and visual cameras allow for greater accuracy both thermally and spatially. NASA foresees the technology being useful in aerospace (for injectors, coolant components, heat exchangers), automotive (exhaust systems), and medical (orthopedic implants) applications. Discuss in the NASA forum at 3DPB.com.

[Source / Images: NASA]

 

Share this Article


Recent News

GE Additive Partnership to Establish BEAMIT Metal 3D Printing Powerhouse

Design for Disruption: 3D Printing Design for Installation



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Dream 3D Printing Soonicorns: Essentium, ICON & More

As of July 2021, 291 companies achieved the coveted mythical $1 billion status, far surpassing any previous year’s peak, according to financial platform Crunchbase. With 2021 proving to be a...

Massive 3D Printed Park Erected in Shenzen, China

Forget the mutually reinforcing buildup of their respective militaries – the real battle between the United States and China is in the field of 3D printing! You’ve probably heard of...

Featured

3D Printing Innovator’s Roundtable Webinar: Ditching DfAM and Embracing Design Freedom

In an industry where change is constant and unpredictable, professionals across the manufacturing industry have turned to additive manufacturing (AM) to overcome design and supply chain challenges. But conventional AM...

Startup Accelerator, Singapore: Dental 3D Printing, Services, and More

This is the eighth article detailing the 3D printing startup scene in Singapore. Teehee Dental Works Teehee Dental Works is a dental lab and dentist with a difference. Along with...


Shop

View our broad assortment of in house and third party products.