3D Printing Launches George Watson’s College to Victory in ESA CanSat Competition

RAPID

Share this Article

Participants in the 2016 ESA CanSat competition. [Image: ESA]

You’ve likely heard of CubeSats, but what about CanSats? The CubeSat’s smaller cousin is a satellite that, yes, fits in a can, and it’s used mostly for educational purposes. While, unlike CubeSats, a CanSat has never left the atmosphere, they’re great tools for teaching young people engineering and data-gathering skills. It’s not technically a satellite, since it doesn’t orbit, but it simulates an actual satellite with all of the components of one.

For the last several years, the European Space Agency (ESA) has held an annual CanSat competition for European students. Participants are challenged to fit all of the major subsystems of a satellite, such as power, sensors and a communication system, into the volume of a soft drink can. The CanSat, once completed, is launched to the altitude of one kilometer or dropped from a platform or balloon. It must then carry out a scientific experiment on its flight and achieve a safe landing, at which point the students will analyze and present their gathered data to judges.

The CanSat competition happens in multiple stages, with teams competing against each other within their own countries first. Once a winner has been declared, the international competition takes place. This year, 17 teams from 17 countries will be competing against each other in the final competition in June.

The George Watson’s College team [Image courtesy of Croft Additive Manufacturing]

One of those teams will be composed of six students from George Watson’s College in Edinburgh, Scotland. The winners of the UK competition, the team will travel to Germany to face off against teams from across Europe. While a CanSat needs to be housed in a casing the size and shape of a soda can, an actual soda can is a bit flimsy for something that’s going to be carrying sensitive equipment one kilometer into the air, so the George Watson’s team went looking for a way to create something more robust.

They turned to Croft Additive Manufacturing, a Warrington-based company that is no stranger to 3D printing spacecraft parts. Croft, which specializes in metal 3D printing, helped the team to design and print a stronger, more efficient metal casing for their CanSat, using selective laser melting (SLM).

“Supporting students and young people who are interested in STEM career paths is an important part of what CAM is all about. Additive manufacturing can help engineers and manufacturers produce unique designs, which would have been impossible to create using traditional methods,” said Neil Burns, Director of Croft Additive Manufacturing (CAM). “We’re glad that the George Watson team could take advantage of our SLM services, and we’re happy to sponsor them in their competition and wish them the best of luck in the European finals.”

A CanSat descends. [Image: CanSat Nederland]

The 3D printed CanSat casing is far superior to an actual soda can, and likely superior to many of the other can-shaped devices the team could have created by other means.

“The challenge in this project is maximising the space available to us,” said a spokesperson for the George Watson’s CanSat team. “By using CAM’s SLM technology, we have ensured that all subsystems in our CanSat are arranged in the most efficient way possible.”

As the competition is still ongoing, the team is keeping further details about their design under wraps. The final competition is coming up in about a month, however, so we’re looking forward to seeing if their 3D printed design launches George Watson’s College all the way to the top. Discuss in the 3D Printed CanSat forum at 3DPB.com.

 

Share this Article


Recent News

MIT Spinoff RPL Secures $7M to Scale and Accelerate Gel Suspension 3D Printing

Desktop SLS Pioneer Sintratec Announces Bankruptcy



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

High Stakes, High Speed: KVG Acquires 15 Nexa3D HSE 3D Printers to Boost Military Tech

As 3D printing increasingly intersects with defense and military logistics, a new partnership between Nexa3D and mission support logistics firm KVG stresses the growing importance of this technology in strategic...

3D Printing Webinar and Event Roundup: April 28, 2024

In this week’s 3D Printing Webinar and Event Roundup, the Ceramics Expo is taking place in Michigan, Stratasys continues its advanced training courses, and SPE is holding a Polymer Characterization...

Featured

Attending the ASTM F42/ISO TC 261 Meetings: The Nitty-Gritty of Additive Manufacturing

I never thought I’d be so excited about an event focused on additive manufacturing (AM) standards, but here we are! When I learned that the recent biannual ASTM F42/ISO TC...

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

The University of Maine has once again broken its own record by unveiling the largest polymer 3D printer in the world. Surpassing its 2019 achievement, the new Factory of the...