G3DP Project: Mediated Matter & MIT Glass Lab Develop Advanced Glass 3D Printer

IMTS

Share this Article

gl2

[Image: Markus Kayser]

When it comes to the selection of materials compatible with 3D printing, things seem to really be picking up as of late. From plastics to metals to clays, concrete and biological material, researchers are devising methods of printing with just about everything these days.

[Image: Chikara Inamura]

[Image: Chikara Inamura]

Just a couple months back we covered an Israeli company called Micron3DP, which had managed to create a process to 3D print glass. Although their technique is still under development and could use some fine tuning, they apparently aren’t the only ones researching this area within the 3D printing space.

In fact a group called Mediated Matter, founded and directed by a woman most of you are likely familiar with because of her incredible use of 3D printing in her art, Neri Oxman, has teamed with MIT’s Department of Mechanical Engineering, Wyss Institute and MIT’s Glass Lab to develop an advanced process of precise glass 3D printing.

“Glass‐based materials hold the potential to provide particular value in the additive manufacturing field due to their hardness, optical qualities, affordability and availability,” they write.

Through a project called G3DP, the team–which includes John Klein, Michael Stern, Markus Kayser, Chikara Inamura, Giorgia Franchin, Shreya Dave, James Weaver, Peter Houk and Prof. Neri Oxman–has utilized the cutting edge technologies of today along with the traditional age-old glass making tools of yesterday to create incredibly intricate 3D printed glass structures.

gl5

[Image: Steven Keating]

The way the machine works is actually quite simple. The top of the printer is basically a small kiln, which the user is able to place glass into. The kiln fires up and reaching a temperature of approximately 1900°F is easily able to melt the glass placed within. The lower section of the printer is made up of an alumina-zircon-silica nozzle, which has a similar function to that of a typical hotend on a desktop FDM 3D printer. Molten glass is then funneled down from the kiln and through the nozzle as it’s extruded onto a build platform to slowly cool and harden. When they want the glass flow and printing to stop, all they have to do is lower the temperature of the nozzle by using compressed air.

The frame of the printer is constructed out of 80/20 aluminum stock and square steel tube. They used three independent stepper motors and a lead screw gantry system and drivers which were controlled via an Arduino and a RAMPS 1.4 Arduino shield. The movement system is very similar to any Cartesian-based 3D printer on the market today that you are likely familiar with.

gl3

[Image: John Klein]

In samples that the researchers had printed, each layer of printed glass had a height of approximately 4.5mm and a width of around 7.95mm on average. Additionally the prints were incredibly accurate as explained in the September 2015 issue of 3D Printing and Additive Manufacturing:

“The deposition of the glass layers, however, appears to be highly precise: the deviation of the filament centers from the centerline was 0.18 mm ± 0.13 mm over the analyzed section (or ca. 2.25% of the total wall thickness). The maximum deviation observed was 0.42 mm. Therefore, a conservative tolerance of 0.5 mm could be considered for the fabrication of glass printed objects using this approach.”

With a highly accurate platform for fabricating intricate glass structures, there are numerous applications for such a device, and as research continues on the G3DP project it will be interesting to see what industries take note of this 3D printing process besides just artists like Oxman.

If you are interested in seeing some of the printed glass pieces in person, they will be on display next year in an exhibition at the Cooper Hewitt, Smithsonian Design Museum. Let us know your thoughts on this awesome process in the 3D Printed Glass forum thread on 3DPB.com. Check out the video below provided by Mediated Matter showing the printer in action:

gl6

[Image: Andy Ryan]

[Researchers Include: John Klein, Michael Stern, Markus Kayser, Chikara Inamura, Giorgia Franchin, Shreya Dave, James Weaver, Peter Houk and Prof. Neri Oxman.]

Share this Article


Recent News

3D Printing Financials: Velo3D Struggles in Harrowing 2023 Earnings Report

Time Travelers’ Relics: 5 Spectacular 3D Printed Artifacts that Bring History to Life



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: March 17, 2024

It’s another busy week of webinars and events, including SALMED 2024 and AM Forum in Berlin. Stratasys continues its in-person training and is offering two webinars, ASTM is holding a...

HP Releases New Arkema Sustainable 3D Printing Polymer Ahead of AMUG 2024

Ahead of the Additive Manufacturing Users Group (AMUG) Conference in Chicago next week (March 10-14), HP Inc. (NYSE: HPQ) has announced a new sustainable polymer offering, PA 12 S, for...

3D Printing Financials: Materialise Reports Growth in 2023 with Medical Segment Success

Closing out 2023, Materialise (Nasdaq: MTLS) unveiled a strong financial performance for its fourth quarter. The Belgium-based company reported a revenue increase of 4.1% year-over-year, and despite facing net losses,...

3D Printing Webinar and Event Roundup: February 25, 2024

It’s another busy week of webinars and events in the AM industry, including Silicone Expo Europe in Amsterdam, an open house for Massivit in North America, and the AM for...