Intel Edison and SparkFun Blocks Unite in a 3D Printed Smartwatch Case

Share this Article

main imageThe idea for creating a 3D printed smartwatch case to house the miraculous and minuscule Intel® Edison emerged when Seattle, Washington-area tech expert Tyler Gibson attended a Hackathon and was musing over “a bunch of SparkFun Blocks” and one of the small but mighty Intel devices. Gibson decided he wanted to make a stand-alone, wearable device and engaged veteran software developer Jason Fox of Fort Worth, Texas to be his cross-country collaborator.

Intel® Edison Compute Module (IoT)* From $53.63

Intel® Edison Compute Module (IoT)*
From $53.63

The Intel Edison is a tiny computer primarily intended for use as a development system for wearable devices. Despite its diminutive size, it contains a dual-core Intel Quark x86 CPU at 400 MHz, supports complex data collection, and communicates via Bluetooth and WiFi. The Edison was just the right size and had the kind of function Gibson wanted for his high-tech wrist computer.

In thinking about the case, Gibson decided not to start from scratch but, rather, to see if anyone else in the Thingiverse online community to which he belongs had already designed something he could adapt. Fortunately, a maker had indeed already done a good deal of Gibson’s work for him, at least where the design of the case and wrist strap for the device were concerned. He grabbed the .stl files and imported them into Rhinoceros 5 where he got to work transforming the pre-existing design to accommodate an Intel Edison.

His first 3D print was less than he’d hoped for. The smartwatch case looked good but, recalls Gibson, “the buttons didn’t work at all, the Dpad didn’t fit, the top cover printed with a single layer, the cutout in the back for wiring was too thin and didn’t print at all, the case was too tight, there was no way to get the LED in without cutting, and I forgot to put in holes for the charging port and on/off switch!” That spelled trouble for the maker–at least for this iteration.

Despite that fairly long list of shortcomings, Gibson wasn’t discouraged. He decided that, rather than “throwing the files up on the web as-is,” he’d basically start over, using the failure to inform the additional adjustments he needed to make. He felt like he’d be letting down people who might want to 3D print the smartwatch case for themselves but either did not have expensive modeling software or didn’t own 3D printers that print as well as his.

It was back to the drawing board, including measuring everything again. Gibson recalled:

“Even though I used calipers to measure everything multiple times, I still got almost every dimension wrong! There is a big difference between what you measure, model and print. FDM (Fused Deposition Modeling) printers need quite a bit of tolerance to account for differences in materials, temperatures, hotends, and software slicers.”

Edison_Bottom_preview_featuredIn the end, Gibson persevered, making changes directly to the 3D model of the smartwatch case and designing it so that all parts would snap together and thus no gluing would be required. In that regard, he had some sage advice: “Snap-fit parts,” recommended Gibson, “need 0.2mm – 0.3mm of tolerance, or about ½ the width of your tip.” He maintains that, while most people are pretty reticent about designing snap-fit parts, they are worth the effort when objects assemble so easily.

Another excellent bit of advice Gibson offered was to avoid making your models overly complicated and carefully measure before getting too far into the modeling process. In fact, his process involves four steps: measure, model, print, and repeat. In other words, check your work as you go.

If you want to take on this project, you actually don’t need to start from the drawing board as Gibson has shared his files on Thingiverse and you can read his process blog, where he’s shared lessons learned along the way. He has yet to post the code, circuit schematics and internal details for the smartwatch case but insists they’re coming soon to Thingiverse.

 

Share this Article


Recent News

3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team

6K Partners with Relativity Space, Commissions UniMelt to Transform Sustainability in Metal 3D Printing



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

Velo3D Lands Largest Metal 3D Printer Order to Date, from Aerospace Customer

Recently, Velo3D received its largest order in company history since its launch commercially in 2018. An existing aerospace customer placed an order worth $20 million for Velo3D’s innovative, industrial metal...

Relativity Secures a New Launch Site in California for 3D-Printed Rockets

A new launch site facility at Vandenberg Air Force Base in Southern California will be Relativity Space‘s latest adoption to its growing portfolio of infrastructure partnerships. With this new addition,...

Using Ultrasonic Waves to Analyze Residual Stress in 3D-Printed Metal Parts

Researchers from the Czech Republic and Brazil have come together to highlight ultrasonic testing for stress analysis in ‘Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves:...

Toward a Circular Economy: 3D Printing with Curable Vegetable Oil

Many of us have heard of using vegetable oil for alternative sources of energy like diesel gasoline, but you may be surprised to learn that it can play a role...


Shop

View our broad assortment of in house and third party products.