The European Union recently awarded funding to Belgium-based additive manufacturing company, Materialise. Materialise is receiving funding as part of the Cognitive Autonomous Catheter Operating in Dynamic Environments, or ‘Cascade Project’. The Cascade Project is a research team made up of seven partner institutes around the European Union, including the University of Leuven in Belgium, University College London in England and the University of Bremen in Germany.
The project’s primary mission is to develop a new line of robotic catheters that will be able to identify areas in a patient’s blood vessels that are at risk during cardiac catheterizations, a medical procedure used to diagnose and treat some heart conditions.
During a cardiac catheterization, a catheter is put into a person’s blood vessels through the arm, upper thigh or neck. The catheter is then threaded to the person’s heart. Once the catheter is in place, doctors are able to do diagnostic tests and treat ailments as necessary. Though cardiac catheterization rarely causes serious complications, there is a risk.
If the Cascade Project is able to create “smart” catheters, the catheters would be able to actively change their course within a person’s vascular tree, reducing or even eliminating cardiac catheterization-related complications such as dislodging plaque or calcium into the circulatory system or damaging arterial walls.
To aid in the creation of smart catheters, Materialise is providing researchers with life-like 3D-printed models to use in their research. The models were created from the CT images of real patients. The CT images were inputted into Mimics, Materialise’s 3D-imaging software, and then 3D printed by Materialise using its proprietary HeartPrint Flex material. HeartPrint Flex is an artificial substance that gives models a flesh-like feel and appearance. It even pulses when attached to a pump to simulate blood flow.
Cascade Project researchers also may study other possible circulatory-system related pathologies in their testing environment such as aneurysms, extensive calcifications and even hearts with anatomical abnormalities which cause them to be distorted in shape.
During a recent review by international scientists and EU representatives, the Cascade Project received positive feedback, which may allow the project to research related issues in the years to come.
Learn more about the Cascade Project at https://www.cascade-fp7.eu/ and Materialise’s biomedical additive manufacturing technologies at https://biomedical.materialise.com/heartprint. Let us know what you think about this amazing technology in the Materialise 3D printed cardiac catheter forum thread on 3DPB.com. Below is a quick clip related to Materialise’s HeartPrint technology.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Divide by Zero Releases $500 Altron 3D Printer with Advanced Features
Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...
3D Printing News Briefs, September 12, 2024: Scholarships, Pool Maintenance, Shoes, & More
In 3D Printing News Briefs today, four graduate students received $10,000 scholarships from ASTM International, and 3DPRINTUK announced the first commercial launch of the Stratasys SAF printer in the UK....
Stratasys vs. Bambu Lab: A 3D Printing Patent Dispute with Far-Reaching Implications
Additive manufacturing (AM) stalwart Stratasys Ltd. (Nasdaq: SSYS) has initiated legal action against Bambu Lab and its associated entities, alleging patent infringement by their 3D printers. Filed in the US...
Regular, Medium, and Large Format 3D Printing Explained
At Additive Manufacturing (AM) Research and on 3DPrint.com, we use the terms regular, medium, and large format to segment the 3D printing market. We developed these terms to help bring...