New York City-based electrical engineer, Chris Fenton, helps design supercomputers to pay the bills. When it comes to fun, however, this imaginative maker’s forays into steampunk machines keep him both engrossed and entertained. Fenton shared on MakerBot’s Thingiverse his recent project, which he calls PixelWeaver, a fascinating, steampunk-style machine that is partly 3D printed.
PixelWeaver is an entirely mechanical, punch-card driven, bit-mapped display inspired by The Difference Engine, a work of fiction written in 1990 by William Gibson and Bruce Sterling that poses an alternate history. The book is regarded as critical in establishing the genre conventions of steampunk. In the book, Victorian-era British inventor, Charles Babbage, builds a mechanical computer–an analytical engine. One of the machines featured in the story is a Kinotrope. It has a large panel comprised of little cubes of different colors on each facet; the cubes can be spun by a steam-powered crank machinery drive called a difference engine (a titular calculating machine) which orients particular colors forward, rendering them as physical pixels in a huge display. Driving the Kinotrope is just one role of the difference engine.
As a computer engineer, so clearly not a novice, Fenton’s working version of the novel-inspired Kinotrope has two primary components: A 32-hook, Jacquard-style punch card reader, which can be mounted over a small loom or any other device that requires mechanical control, and a 6×5 pixel, black-and-white display. What he calls a “messy web of nylon thread” connects the two components and allows a chain of cards to play an arbitrary animation across the display.
A project that Fenton had previously undertaken, the Turbo Entabulator, helped him figure out how to build his PixelWeaver. As with such generally uncharted projects, he learned as much from his mistakes as from his successes but the Turbo Entabulator ended up being an educational predecessor to the PixelWeaver.
The frame of the PixelWeaver is constructed largely from 15mm x 15mm extruded, repurposed, T-slot aluminum. The T-slots accommodate M3 nuts, which makes it easy to bolt things to them and adjust the bolts when necessary.
The card reader is a single-acting, single-cylinder Jacquard machine with four rows and eight hooks. For those readers who aren’t especially weaving- and loom-savvy, that’s a particular process for weaving and a critical loom attachment invented by Frenchman, Joseph Marie Jacquard in the early 19th century, that made the automation of weaving possible. It’s particularly useful for creating complex patterns. A central drive shaft with an attached handle provides both power and timing to the entire machine, including the display.
While Fenton had formerly tried to limit manufacture exclusively or as much as possible to 3D printing, he incorporated other methods of fabrication for the PixelWeaver with 3D printing still figuring prominently. The pixels are made using a 3D printer, and a small, four-tooth ratchet wheel is printed onto one side of each cube. A hole for an axle runs all the way through the cube so that the pixels can be assembled into rows. Fenton mounted a thin ratchet arm next to each pixel and the arms, when pulled backwards, can toggle the pixel state. A flat spring holds each pixel in place while the ratchet arm returns to the resting position.
So, how does the PixelWeaver work? In essence, every pixel is implemented as a cube. The alternating faces of each cube are painted black and white. When the pixel is rotated 90 degrees, it toggles from black to white or white to black. “The design,” suggested Fenton, “could actually be extended to use color by painting the faces with different colors and sequencing through them as necessary.”
Fenton noted that he still needs to do some “remapping” and to work out some bugs in the machine and in his process. If we’ve lost you in the above discussion of toggles and pixels, ratchet arms and punch cards, your interest will surely be restored when you see the PixelWeaver in action in Fenton’s video. There really is something fantastical, utterly charming and other-worldly about the hand-cranked, human driven machine whose ultimate purpose seems to be far more about evoking than manifesting.
Check out the video of the machine in action below, and let us know your thoughts on it in the PixelWeaver forum thread on 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Meet Xell, xolo’s Budget-Friendly Bioprinter for Labs
Building on its expertise in volumetric bioprinting, xolo has unveiled Xell. This compact bioprinter brings rapid fabrication of complex structures without visible layers to research labs at an unprecedented price....
Creality Shines at Formnext 2024, Showcasing K2 Plus, New DIY Model and Accessories
Creality proudly participated in Formnext 2024, continuing its tradition of excellence as a long-standing exhibitor at one of the world’s premier trade fairs for additive manufacturing. This year, Creality highlighted...
UnionTech’s Additive Manufacturing Innovations Revolutionize Industry Applications at Formnext 2024
Frankfurt, Germany – Formnext 2024, the premier event for additive manufacturing and industrial 3D printing, has played host to UnionTech’s groundbreaking showcase. The event, held from November 19th to 22nd...
Axolotl Biosciences Brings Biotech to the Forefront at Formnext 2024
Formnext 2024 is known as the world’s leading trade fair for industrial 3D printing, with towering machines and manufacturing giants filling its halls. Amid this industrial frenzy, Axolotl Biosciences, a...