FDA Master File for Medical 3D Printing to Speed Up Regulatory Approval

HeyGears Black Friday

Share this Article

Belgian firm Amnovis is commercializing its deep titanium 3D printing and implant experience by helping other medical firms, startups and inventors bring their products to market. Through the company’s manufacturing and engineering expertise companies can accelerate their time to market and rent rare expertise. Now, Amnovis has an FDA Master File that lays out all the relevant information for its pure titanium (Grade 1) and titanium Ti-6Al-4V ELI (Grade 23) for powder bed fusion.

This is what an FDA Master File looks like. Sizes in inches. That is regulatory power. This is what an FDA Master File looks like. Sizes in inches. That is regulatory power.

A Master File is a confidential disclosure to the FDA that outlines a drug, packaging or information about a manufacturing site, including the procedures that a firm follows. Master Files can relate to “facilities and manufacturing procedures and controls,”contract packaging and other manufacturing” and facilitate the FDA´s understanding of manufacturing procedures in place at a firm. In Amnovis´s case, the company qualified 3D printing processes for standard and patient-specific devices using validated Ti grade 1 and Ti-6Al-4V grade 23 materials.

Amnovis hopes that the file will facilitate regulatory approvals for itself and its customers. The FDA has been remarkably proactive about 3D printing in general, clearly hoping to be the default regulator for 3D printing in implantology and beyond. While Europe is coming to terms with new EU medical device directives which make it seem stricter than the US, the FDA has moved itself into pole position as the regulator for additive.

Smart move. The FDA has been more than welcoming to standard 3D printed medical devices in titanium, but it has been much more hesitant around patient-specific devices.

As I have stated before, through my own conversations, I´ve discovered that custom medical devices may sound lovely, but what if we could just go from five sizes to 30, rather than an infinite number? That would be safer and more than adequate to mitigate blood loss and encourage quicker recovery times and shorter procedures. For more discussion on this you can check out the two 3DPod´s below.

3DPOD Episode 138: Point-of-Care Medical Device 3D Printing with Dr. Steven Kurtz, Drexel University

3DPOD Episode 123: Dale Swarts, 3D Printed Orthopedic Implants, and More



Share this Article


Recent News

$50M to Boost Fabric8Labs’ Electrochemical AM Capacity in the U.S.

AIM3D Opens Voxelfill to Everyone



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TRUMPF Additive Manufacturing Rebrands as ATLIX and Brings New Machine to Formnext

TRUMPF’s Additive Manufacturing division is now called ATLIX. The now Italian company will exhibit in Hall 12.0, Stand D99, at Formnext, showcasing its new name, branding, and a new machine....

Featured

A Need for New Business Models for Additive Construction Adoption? Not Really

Compared to other industries, the construction sector is known for its lower margins, largely due to the nature of projects and the competitive bidding process it undertakes to acquire them....

Authentise Expands Its Platform to Unify the Front Office and Factory Floor

Authentise has made a number of announcements this year demonstrating the consistent buildup of its unique additive manufacturing (AM) platform, with projects focused on strategically critical applications like defense and...

Sponsored

NECO Adopts 3D Printing to Modernize Drone Manufacturing

As demand grows for more agile and cost-effective production methods, additive manufacturing is increasingly seen as a viable solution for end-use parts — not just prototyping. NECO, a contract manufacturer...