TECNALIA is a benchmark research and technological development center focused on transforming knowledge into business opportunities for companies and GDP growth for society. The Materials for Extreme Conditions research group belongs to the company’s Industry and Mobility (I&M) division and focuses on the design, manufacturing, maintenance, and end of life of industrial products and services.
SENER Aeroespacial is a leading supplier of high-performance aerospace systems for space, defense, and science, adding value with technological developments for more than half a century. The company works with clients such as the European Space Agency (ESA) and carries out multidisciplinary projects in optomechanics, large mobile structures, and instrumentation and Infrastructure control.
The material flexibility of X-Series binder jetting technology allows TECNALIA to use its InnoventX system to process a range of powders that support various industries. For example, the team uses its expertise to optimize hard metal and tool steels that drive performance improvements in the cutting tool industry as well as processes technical ceramics like silicon carbide and alumina used in the most cutting-edge innovations in critical applications.
The TECNALIA team has collective knowledge in materials for extreme temperature, wear, abrasion, and corrosive environments, making them the natural partner when SENER Aeroespacial and the European Space Agency (ESA) wanted to investigate a new manufacturing route for a satellite optical support. The harsh conditions of space travel require components with high dimensional stability, a coefficient of thermal expansion (CTE) compatible with their adjacent systems, and excellent surface quality and mechanical properties. Thus, ceramics are ideal for space applications because of their thermo-mechanical stability, high temperature performance, hardness, and light weight and TECNALIA brought the required material and process expertise to the table to apply to challenge.
“Space applications are always looking for weight reduction since this is directly linked to the final payload cost,” said Dr. Iñigo Agote, Project Manager and Group Leader at TECNALIA, explaining how lightweighting is a systematic demand of aerospace companies today. Saving mass is one reason why the technical ceramic silicon carbide (SiC) is a highly sought-after material in this sector. It can be polished until it’s smooth with unique benefits of staying lightweight, strong, and with the thermal properties to adjust to temperature extremes seen in space.
However, fabricating SiC using traditional methods is both costly and difficult because of exactly these desirable high-performance properties. “The degree of shape complexity is limited when using more traditional production processes like cold forming and sintering,” Agote said. “Parts require final machining if the geometry is complex and machining ceramics like SiC is a tough and expensive process.”
Additive manufacturing was investigated to provide a near-net shape part to reduce the difficult and expensive machining and polishing post-processing steps. Binder jet 3D printing was identified as the only process able to create the unique SiC design with speed and precision, even among other additive technologies because the dark powder won’t UV cure and the high melting point eliminates laser-based methods.
The TECNALIA team got to work identifying adequate SiC powders and defining the best processing steps. The flexibility of the Desktop Metal InnoventX machine to customize parameter settings combined with the process and materials expertise of the TECNALIA team to tailor the properties for this application led to the breakthrough that delivered a final part with the required quality. The part could be printed in the InnoventX in 3 hours before PIP and infiltration with silicon for densification.
Download the complete case study to learn how the TECNALIA team used binder jetting to produce near-net shape parts that reduced both post-processing time and mass.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...
3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing
Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...
3D Printing News Unpeeled: Filtering PFAS, Solid Knitting & Holographic Direct Sound Printing
A Carnegie Melon University (CMU) researcher has been working on solid knitting for over a decade. Yuichi Hirose has now made a new solid knitting machine that he hopes will...
An Intertwined Future: 3D Printing Nanocellulose
Nanocellulose is an exciting new group of materials that could be widely used in manufacturing. Nanocellulose, also called nano cellulose, cellulose nanofibers (CNF), cellulose nanocrystal (CNC), and microfibrillated cellulose (MFC),...