AMS Spring 2023

Sending Optimized Silicon Carbide into Space with Binder Jetting

6K SmarTech

Share this Article

TECNALIA is a benchmark research and technological development center focused on transforming knowledge into business opportunities for companies and GDP growth for society. The Materials for Extreme Conditions research group belongs to the company’s Industry and Mobility (I&M) division and focuses on the design, manufacturing, maintenance, and end of life of industrial products and services.

SENER Aeroespacial is a leading supplier of high-performance aerospace systems for space, defense, and science, adding value with technological developments for more than half a century. The company works with clients such as the European Space Agency (ESA) and carries out multidisciplinary projects in optomechanics, large mobile structures, and instrumentation and Infrastructure control.

The material flexibility of X-Series binder jetting technology allows TECNALIA to use its InnoventX system to process a range of powders that support various industries. For example, the team uses its expertise to optimize hard metal and tool steels that drive performance improvements in the cutting tool industry as well as processes technical ceramics like silicon carbide and alumina used in the most cutting-edge innovations in critical applications.

The TECNALIA team has collective knowledge in materials for extreme temperature, wear, abrasion, and corrosive environments, making them the natural partner when SENER Aeroespacial and the European Space Agency (ESA) wanted to investigate a new manufacturing route for a satellite optical support. The harsh conditions of space travel require components with high dimensional stability, a coefficient of thermal expansion (CTE) compatible with their adjacent systems, and excellent surface quality and mechanical properties. Thus, ceramics are ideal for space applications because of their thermo-mechanical stability, high temperature performance, hardness, and light weight and TECNALIA brought the required material and process expertise to the table to apply to challenge.

“Space applications are always looking for weight reduction since this is directly linked to the final payload cost,” said Dr. Iñigo Agote, Project Manager and Group Leader at TECNALIA, explaining how lightweighting is a systematic demand of aerospace companies today. Saving mass is one reason why the technical ceramic silicon carbide (SiC) is a highly sought-after material in this sector. It can be polished until it’s smooth with unique benefits of staying lightweight, strong, and with the thermal properties to adjust to temperature extremes seen in space.

However, fabricating SiC using traditional methods is both costly and difficult because of exactly these desirable high-performance properties. “The degree of shape complexity is limited when using more traditional production processes like cold forming and sintering,” Agote said. “Parts require final machining if the geometry is complex and machining ceramics like SiC is a tough and expensive process.”

Additive manufacturing was investigated to provide a near-net shape part to reduce the difficult and expensive machining and polishing post-processing steps. Binder jet 3D printing was identified as the only process able to create the unique SiC design with speed and precision, even among other additive technologies because the dark powder won’t UV cure and the high melting point eliminates laser-based methods.

The TECNALIA team got to work identifying adequate SiC powders and defining the best processing steps. The flexibility of the Desktop Metal InnoventX machine to customize parameter settings combined with the process and materials expertise of the TECNALIA team to tailor the properties for this application led to the breakthrough that delivered a final part with the required quality. The part could be printed in the InnoventX in 3 hours before PIP and infiltration with silicon for densification.

Download the complete case study to learn how the TECNALIA team used binder jetting to produce near-net shape parts that reduced both post-processing time and mass.

Share this Article

Recent News

Desktop Metal Receives $9M 3D Printer Order from German Car Maker

3D Printing News Unpeeled: 3D Printing MEMS, Desktop Metal gets a $9 Million Order


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

3D Printing News Unpeeled: Warhammer, AVIC and Pearson Lloyd

Today we look deeper in to Warhammer 40K and other table top games. Why is 3D printing being used for these games and why has it not spread? How come...

3D Printing Webinar and Event Roundup: November 27, 2022

Coming off of Thanksgiving in the U.S., we’re still at low mass when it comes to 3D printing webinars and events, but there are still a few offerings this week,...

3D Printing News Unpeeled: Wipro Launches a 3D Printer, Liux Wants to Make more Sustainable Cars

Indian technology and outsourcing giant Wipro has launched its very own FDM 3D printer. Liux is a Spanish startup that wishes to make a much more sustainable car while Meld...

3D Printing News Unpeeled: NASA Recycles Packaging and Wants 3D Printed Shuttle Tiles

NASA has given an SBIR award to Gigabot to develop an in space packaging reycling and printing system. Meanwhile Canopy gets another award to make a binder jet production technology...