AM Investment Strategies
AMS Spring 2023

The Personal Aviation Era and 3D Printing: Jetpacks and Gliders


Share this Article

I was surprised when Materialise Founder and CEO Fried Vancrean told us, on the 3DPOD, that he believed small planes and personal aircraft would become an interesting market for 3D printing. Flying cars, jetpacks, and personal airplanes have always been the stuff of legend to me. Perennially a magical five years away, these were inventions that repeatedly would not make it to market. Impractical, unsafe, expensive, and a regulatory nightmare, they were the next big thing that never became a big thing. Even when 3D printing advanced sufficiently to begin to reduce the costs of developing these craft, I still never really believed in them. Personal Air Vehicles was something being developed but it seemed like it wouldn’t pan out, again.

However, Fried is a visionary and very good at reading the future, so I had to think of it. The most succinct way of summing up my findings is that I’m still skeptical. There is a lot more going on than before, and, if it should happen, then 3D printing will play a role.

By and large, we can divide up the personal aviation trend into a number of different categories: kit planes, small aircraft, low-cost personal aircraft, personal drones, gliders, and jetpacks.


The most exciting, of course, is jetpacks and we know that these have used 3D printed components and make extensive use of 3D printing in their design phases. The feel-like-a-five-year-old angle is strong with this one, but they’re very dangerous since, without an engine running, there is nothing in the way of lift.

A helicopter will autorotate if the main engine cuts off and if it is above 30 meters, let’s say. This means that rotors keep spinning and it can land more or less safely. With a jetpack, you have no similar built-in safety feature. You’ll drop like a rock if there is an engine failure. And helicopters are some of the most lethal moving vehicles in the world. Jetpacks are also difficult to pilot. If you see a Gravity Industries jetpack demo with the U.K. Royal Marines or the Dutch Mariniers, then it’s important to realize that, in both cases, it’s the firm’s founder who is flying the jetpack. This is brave, but also a testimony to just how difficult and almost intrinsically unsafe these things are. Electric jetpacks and copter-based jetpacks could make these devices more likely.

Likelihood: So, what do we think in terms of this technology finding funding, getting developed, and becoming significantly larger? The involved nature and dangers of jetpacks mean that they are a world away from an ‘easy-for-everyone’, sky-commuter vehicle. With little in the way of crash protection, these seem destined to remain niche. While they are very exciting, it is difficult to imagine them becoming safe within the current design paradigm. And if you do add all of the safety features, you’ll end up with something that more closely resembles a personal aircraft than a jetpack. Or maybe you’ll end up with something like a Honda Goldwing for the skies. Interest will remain high because this is cool, but investment interest has been much lower here than in other segments.

The speeder is a jetpack/flying motorcycle hybrid.

Opportunities and need for 3D Printing: Having said that, 3D printing could play a huge role in the development of better jetpacks, particularly since batteries and propulsion systems are so important to the equation. A jetpack is very nearly a “conformal air vehicle”, so the redesign of components and assemblies to be curved, to fit into tight spaces, or to have less mass will have a huge impact here, as will weight reductions.

Maturity of 3D printing: 3D printing is also mature enough right now to make the propulsion chamber and other components out of various copper alloys or high-temperature materials using powder bed fusion. Scalmalloy, titanium or other materials can be 3D printed to save weight and improve performance for many of the critical components in jetpacks. In turn, the role that 3D printing can play here is considerable.

Overall: All in all, this is the segment where 3D printing will make the largest impact on the technology advancing and it is possible, albeit expensive, to print most of the key components. The likelihood that 3D printing will be extensively used in jetpacks is 70% or higher, whereas the likelihood of jetpacks becoming widely prevalent is 10%.


Balsa wood and other gliders have been in use for over 100 years. These are hobbyist craft that sail the air currents. Finicky and exacting, these lightweight vehicles have never really been in the picture as personal commuter or personal aviation craft, but, given the current penchant for sustainability, motorized gliders would be ideal.

When launched, they make almost no noise and require comparatively little power. While flying in glider mode, they are silent. With a new generation of navigational aids and efficient lightweight engines, this would be a method to travel medium-to-long distances with low environmental impact. This wouldn’t really work to get everyone to the office, but may be able to fill some role very sustainably. These craft are also comparatively cheap as an upfront cost and to run per hour.

Opportunities and need for 3D printing: Lightweight components and a new generation of light engines could very well make use of 3D printing for weight saving.

Maturity of 3D printing: We could even print some of the body and wing panels using Big Area Additive Manufacturing or other technologies. For other parts, we could currently make the required components using existing materials and processes.

The Taurus electric glider has been around since 2007.

Likelihood: There doesn’t seem to be a whole lot of excitement around gliders compared to electric aviation for larger aircraft. The combination of efficient electrical engines, batteries, and gliders is an exciting one to me, but, engineers, and capital have not really discovered this segment yet.

Overall: Someone needs to Elon this segment for it to work, but it seems technically possible. The likelihood of printing being used extensively is 60%, since current frame building technologies and composites would also be viable. The likelihood of this happening in a big way seems low: 15% or less.

In the next installment, we’ll look at kit planes, small aircraft, low-cost personal aircraft, and personal drones.

Share this Article

Recent News

3D Printing News Unpeeled: HP, Autodesk, Azure Homes, Fathom and Mantle

3D Printing Firm 6K to Make Battery Materials with ONE


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Battery 3D Printing Startup Sakuu Secures Japanese Spark Plug Leader for Ceramic Materials

As Bay Area startup Sakuu continues toward commercialization of its solid state battery (SSB) 3D printing technology, the company has secured a partnership with NGK Spark Plugs (TYO: 5334), a...

3D Printing News Unpeeled: Rocket Lab, Sierra Space, Caracol, 6K

We explore Rocket Lab and Sierra Space join alliance to help move troops and material via rockets for terrestrial transport, Sandhelden and Duffy London 3D printing a sand coffee table, Caracol...

Incodema3D Signals US Metal 3D Printing Scale-Up with 6K, Uniformity Deals

Incodema3D, an additive manufacturing (AM) services company specializing in the aerospace sector, announced two new projects recently, involving two different metal alloy powders. First, Incodema3D, which is headquartered in upstate...

UCLA Materials Scientists Awarded Grant for 3D Printed Batteries

The University of California, Los Angeles (UCLA) announced that a team of materials scientists at the university’s Samueli School of Engineering has received a grant to develop a new additive...