China: Microcasting Technology in Metal 3D Printing to Produce Large Pump Propeller Blades

Share this Article

An industrialization team from China’s Huazhong University of Science and Technology, led by Professor Zhang Haiou, is using a relatively new technology with 3D printing to produce heavy, industrial parts like large pump propeller blades. After a request for a substantial order of large jet blades for a shipbuilding unit, the University team began using micro-casting and forging in metal 3D printing for the manufacturing of large parts.

Necessary in ship navigation, pump jet propellers can be made significantly faster with micro-casting and forging, a technological evolution from material manufacturing to subtractive manufacturing to additive manufacturing. Mechanical properties are improved, along with accuracy—elevated from 0.5mm to 0.1mm, with little to no defects like pores or cracks. Haiou explained that without forging, metal fatigue resistance may be inferior, performance of parts may not be sufficient, and defects can occur due to lack of fusion, stability, and porosity.

Attempting to improve metal 3D printing for large parts with complex geometries, Haiou and his team moved forward to disrupt industrial production with their novel micro-casting and forging technique. News of Haiou’s system, dubbed the “Micro Forging & Casting Sync Composite Device”, first emerged in 2016, when it was revealed that the technology was being used to create titanium joints for China’s jet fighters. The process consists of:

  • Metal deposition, using metal wire
  • Continuous cold forging and rolling
  • Cooling down

“The micro-casting and forging technology can carry out the above steps simultaneously,” explained Zhang Haiou. “When the printing is completed, the casting and forging are completed at the same time, and the deposition efficiency is three times that of the former.

“We reduced the action that originally required 80,000 tons of force to 1/80,000, that is, less than one ton of force, and at the same time, one equipment completed the work that many large equipment used to complete. The power of the equipment is only 50 kilowatts, and the energy consumption per unit time is two-thousandths of that of a giant press. It is green and efficient.”

In 2016, the system made parts up to 5.5 × 4.2 × 1.5 m in size, with a surface roughness of 0.02 mm, and could use eight types of materials, including titanium and steel. The goal with the technology is to magnify the advantages of 3D printing and additive manufacturing processes, especially for industrial applications in building aircraft, engines, turbines, parts for railways, and nuclear power plants.

“Taking aircraft manufacturing as an example, the number of body structure parts of a large passenger aircraft is currently tens of thousands. If 3D printing technology can be used to produce large, complex, integral, high-performance, and lightweight components in the future, then number of body structure parts for a large passenger aircraft may only be hundreds.

“Not only that, in the future, using metal 3D printing technology and simulation technology will reduce the development and production cycle of the aircraft by an order of magnitude,” said Zhang Haiou.

This is not the only process to combine 3D printing and forging. Arconic developed a technique called Ampliforge that combines directed energy deposition with forging for the same reasons, but it lacks the built-in milling capabilities.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: NetEase News]

Share this Article


Recent News

Get an Exclusive Discount on Your Ticket to AM Summit and Learn About Future Technologies

FDA Clears 3D Systems’ New Multi-Material Solution for 3D Printed Dentures



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

3D Printing Targets Tooling at IMTS 2024

The Western hemisphere’s largest manufacturing trade show, the International Manufacturing Technology Show (IMTS), returned to Chicago for another year, graciously including a 3D printing section once again in its West...

3D Systems and Smith+Nephew Get 510(k) Clearance for 3D Printed Ankle Replacement Treatment

3D Systems (NYSE: DDD) has received 510(k) clearance for its TOTAL ANKLE Patient-Matched Guides. The guide system will be used in conjunction with Smith+Nephew’s SALTO TALARIS Total Ankle Prosthesis and...

Featured

Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald

Like sands through the hourglass, so is the Q2 2024 earnings season.  All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...

3D Printing Webinar and Event Roundup: September 8, 2024

In this month’s first 3D Printing Webinar and Event Roundup, things are picking up! There are multiple in-person events this week, including the TETS Symposium, Additive Manufacturing in Medicine, a...