Metal Binder Jetting
Automotive Polymers

University of Sheffield: Comparative Research of SLM & EBM Additive Manufacturing with Tungsten

Share this Article

Jonathan Wright recently submitted a thesis to the Department of Materials Science and Engineering at The University of Sheffield, exploring 3D printing with tungsten, a rare metal. In ‘Additive Manufacturing of Tungsten via Selective Laser Melting and Electron Beam Melting,’ Wright details the potential for powder bed additive layer manufacturing (ALM) of pure tungsten, using both selective laser melting (SLM) and electron beam melting (EBM).

Referring to the layered approach of 3D printing or additive manufacturing, Wright chooses to encompass most of this technology as ALM, reminding us that Chuck Hull of 3D Systems fame was granted the patent in 1986 after he created stereolithography (SLA).

Schematic Diagram of the SLA Process. Diagram taken from ’Apparatus for production of three-dimensional objects by Stereolithography’
Patent application [1]

“An advantage of the ALM approach is the fact that no additional tooling is required for new components,” stated Wright. “This tool-less approach results in shorter lead times and reduced cost for new products.”

Users in a variety of industries today also enjoy major benefits such as less waste in material, greater savings on the bottom line, and the potential for environmentally friendly processes in some cases, whether powder-based, liquid-based, or solid deposition.

An overview of ALM processes and hardware (adapted from [6])

Tungsten, derived from wolframite ((Fe,Mn)WO4) and scheelite (CaWO4), not only has the lowest vapor pressure of any element but also offers a high melting point and the capability for being ‘drawn into fine wire.’ Used in lamp filaments and a variety of other applications today, it can be used in high temperatures or in cases where high density is required such as X-ray shielding.

Wright also explains that because of tungsten’s thermal properties, ‘low spluttering yield, and short activation decay time,’ it is also suitable for nuclear fusion experiments.

“Tungsten can be machined, (drilled, turned, milled, etc.) however this is difficult, requires expertise, and close adherence to ideal conditions,” states Wright. “Structures with greater complexity can be formed by Electrical Discharge Machining (EDM) overcoming some of these difficulties.”

Because there are challenges and limitations due to the chemical, physical, and mechanical makeup of tungsten, alloying is a consideration; however, Wright notes that a ‘huge number’ of alloys have been examined but not found to be important. So far, tungsten-rhenium alloys have been considered to show the greatest potential for improving ductility.

A general flow diagram for the hydrometallurgy of tungsten [62]

During the experimental phase of Wright’s study, he used a Renishaw SLM 125 to fabricate sample parts, as well as a Renishaw AM 400 for other builds.

Renishaw SLM 125 System

For EBM processes, an Arcam S12 system was used.

Schematic of ARCAM S12 EBM System. Image from

Wright discovered that it was not possible to create tungsten parts without defects, and that beam power was one of the greatest reasons for porosity, with all samples exhibiting high levels at 200W and for 400W, the lowest.

“As porosity in tungsten samples produced via SLM was reduced the number of cracks was found to increase, this was also therefore a function of beam power,” explained Wright.

“Further work needs to be carried out on SLM of tungsten in order produce crack free parts. This may include an investigation of adding an external heat source. A heated environment is likely to reduce residual stresses and raise material above the DBTT.”

A tungsten Langmuir Probe manufactured via SLM. 25mm in length

In experimenting with fabrication of EBM samples, Wright was able to pinpoint the proper parameters for tungsten samples with low defects. He identified speed, current, and hatch spacing as playing a large role in porosity.

A tungsten mono-block manufactured via EBM. External dimensions of 20mm x 20mm x 25mm

A tungsten lattice structure manufactured via EBM. External diameter: 80mm. Thickness: 20mm

“For the first time EBM of tungsten has been reported. Specifically, EBM was able to produce low porosity, crack free parts. EBM appears to the preferable manufacturing process due to its combination of a vacuum environment, high build temperatures and high beam power,” concluded Wright.

“Nonetheless, mechanical properties and geometric accuracy require further improvements before ALM can be used to manufacture tungsten for structural applications. For Applications where mechanical properties are non-critical and complex geometry is required, such as in x-ray collimation, the ALM techniques outlined here could provide a viable processing route.”

As researchers around the world continue to refine 3D printing and AM processes, tungsten is being investigated from examining its properties, to fabricating cutting tools, and large unalloyed parts.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at

[Source / Images: ‘Additive Manufacturing of Tungsten via Selective Laser Melting and Electron Beam Melting’]

Share this Article

Recent News

3D Printing News Briefs, August 13, 2022: Natural Fibers, Robotic Gripper, & More

3D Printing News Unpeeled, Live with Joris Peels Friday 12th of August


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

“We Have Limitless Opportunities to Fuel Growth” Says Randy Altschuler after Xometry’s Q2 Earnings

The last few years have been rough for the capital market. Between the Covid-related economic slowdown, inflation’s impact on stock returns, and an ongoing war in Ukraine, the stock market...

Metal 3D Printing Firm Velo3D Announces Impressive Q2 Earning

US financial markets appear to be in a state of limbo. For one thing, there are few clear opinions circulating concerning the question as to whether the American economy is,...

3D Printing News Unpeeled, Live with Joris Peels Thursday 11th of August

Today we’re going to discuss 3D printed sunglasses from Givenchy, 3D printing drone swarms, more sustainable 3D printing materials for buildings by ORNL, 3D printing earnings season and more.  

3D Printing News Unpeeled, Live with Joris Peels – Wednesday 10th of August

Today we’re going to discuss 3D printed razors, CERN and more in this live cast of the 3D Printing news.