Researchers from the University of Chemical Technology in Beijing continue the growing trend for strengthening existing materials with additives, outlining their findings in the recently published ‘Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling.’
While there are a wide variety of composites in use today, ranging from combinations like bronze PLA to carbon and epoxy—and a growing list of bio-inspired materials too—this study is unique as the researchers employed a melt blending technique while adding different ratios of starch. Composites are used for many different projects, manufacturing methods, and specific reasons—but for this research, the goal was to refine FDM 3D printing further by enhancing:
- Printability
- Tensile strength
- Rheological properties
- Crystallization behaviors
- Biological performances
FDM 3D printing is one of the most common methods used today, offering accessibility and affordability to users around the world.
“In the FDM process, the material has the very significant influence on the quality and function of the printed products,” stated the researchers. “Therefore, it has high theoretic meaning and realistic value to develop high-performance materials for FDM.”
Polycaprolactone (PCL) is a polyester offering many advantages on its own—from flexibility and machinability to being environmentally friendly and biocompatible; however, with the addition of other materials, some of the challenges in using PCL can be avoided too—preventing problems like inferior melting strength and low rate of solidification.
The composite was created as follows:
“PCL, soluble starch, corn starch and potato starch were placed in an air-blower-driver dryer at 50 °C for 2 h. After drying, 100 g of PCL was respectively mixed with 1 g, 3 g, 5 g, 7 g, 9 g and 11 g of each kind of starch. The mixtures were thoroughly blended with a high-speed mixer and then extruded by a twin-screw extruder.”
The researchers 3D printed their samples, measuring 20 mm × 20 mm × 10 mm, on a Replicator X2. They then examined parameters, antibacterial properties, in vitro cytotoxicity, and performed a statistical analysis with around three samples tested in each ‘time point.’
Samples were 3D printed using ‘pristine’ PCL, at temperatures of 70 °C, 80 °C, 90 °C and 100 °C. In terms of maintaining integrity and good melt flow, the researchers noted temperatures 80 °C and 90 °C. Clogging of the nozzle began to occur when the temperature was less than 80 °C.
“However, the quality of 3D-printed pristine PCL models was still lower than that of ABS,” stated the researchers.
Starch was added, chosen due to suitable properties like particle diameter and thermostability, and affordability. Varying mounts were added to the PCL: 3 phr, 5 phr, 7 phr, 9 phr and 11 phr. The 3D model samples showed significant improvement with the addition of starch.
“The addition of starch enhanced the melting strength and solidification rate of PCL/starch composites. The starch increased the crystallization temperature, degree of crystallinity and crystallization rate of PCL/starch composites, which was beneficial for FDM process,” concluded the researchers.
“Furthermore, the quality of the printed products increased with from 3 phr to 9 phr. The completeness of printed model reached 99 with the starch ratio of 9 phr. When 11 phr of starch was added, the viscosity of the melt composite was too high and blocked the nozzle. Therefore, 9 phr was the optimal ratio of starch for 3D printing of PCL. The composite with 9 phr of starch had good performance in FDM process, which could be precisely manufactured into complicated constructions.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Former Formlabs Exec is New Quantica CEO
Inkjet 3D printer manufacturer Quantica has appointed Stefan Hollaender as its new Chief Executive Officer (CEO). This leadership change marks a pivotal moment in Quantica’s evolution, with the outgoing CEO,...
Innovations in Electronics and Additive Manufacturing: Highlights from Electronica and Formnext 2024
In November, J.A.M.E.S. participated in two big industry events: Electronica and Formnext 2024. These international events have been a good opportunity for J.A.M.E.S to show our ability in 3D-printed electronics...
Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald
Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...
Finding Solutions in an Uncertain Market: The impact of reduced material providers and trade tariffs on filament supply
The additive manufacturing market has been an ever-changing market with rapidly evolving technological advancements and growing dependencies on material innovation. The recent wave of material suppliers shuttering operations and the...