Exone end to end binder jetting service

Researchers Address Benefits and Pitfalls in 3D Printing of Tissue

INTAMSYS industrial 3d printing

Share this Article

Authors Jesse K. Placone, Bhushan Mahadik, and John P. Fisher explore the benefits and challenges of tissue engineering. In the recently published ‘Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential,’ the authors also address the future potential for 3D printing, and accompanying materials and techniques.

Noting that bioprinting is intrinsically limited due to the difficulty in sustaining human tissue, the authors explore how obstacles can be overcome, as well as the potential for use in ‘academic, clinical, and commercial settings.’ Many researchers today are also focused on tissue engineering for cells to be used both in vitro and in vivo. Due to challenges with size, nutrients for cells, and waste diffusion, many studies today are centered around creating microvasculature.

Popular materials for use in bioprinting are polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polystyrene (PS), along with a variety of bioinks, and a range of techniques.

“Particularly, there is a high degree of freedom when 3D printing acellular, single-material constructs with either hydrogels or thermoplastics,” state the authors.

The use of multi-material printing with hybrid bioinks is becoming increasingly popular too, allowing for successful fabrication of bone mimetics, for example, creating rigid support materials as well as softer ones for ‘the desired cellular response.’ While a wide range of research studies have been and are in the process of being performed around the world, there has been particular attention paid to the musculoskeletal system, along with forays into fabrication of cartilage, tendons, skin, applications for wound care, and more.

“Current clinical treatments for skin regeneration focus mainly on the epidermal layer and are unable to capture the intricate neurovascular, follicular, and sebaceous gland architecture of the dermal and hypodermal layer,” state the authors. “Consequently, 3D printing research has aggressively focused on recreating these distinct, yet interconnected layers in order to provide more meaningful clinical treatments and therapies for patients suffering from severe 2nd and 3rd-degree injuries.”

Key steps to generate clinically relevant 3D printed substrates. At each development and fabrication step, researchers need to aid in the development of standards as well as evaluation and characterization methods to ensure repeatability. Consideration needs to be taken with the scale up of each of these steps when transitioning from small scale laboratory settings to larger scale fabrication approaches. Additionally, hands on training and formal education regarding the different parameters that need to be controlled as well as the limitations and constraints on different fabrication strategies will be critical for the continuous adoption of this technology as it matures.

The ability to customize nearly any product is one of the greatest benefits to 3D printing, and it translates significantly to the bioprinting realm in allowing for implantation of a patient’s own cells—offering the most patient-specific care possible, and especially in terms of the future for organ transplants.

3D printing is offering tremendous impacts in regenerative medicine too, with possibilities for every organ. Again, while there are inherent challenges when dealing with cells, with time and effort expended toward the study of and sustainability of tissue in the lab, complex structures can be fabricated.

“Researchers should place an emphasis on guiding the field toward developing standard techniques and aid in the adoption of standards of regulatory agencies to provide a framework for clinical translation,” concluded the researchers. “Establishing centers of 3D printing excellence would facilitate the transition from the bench to clinical applications by localizing the expertise and minimizing the logistical problems that may plague individual groups.

“As the field continues to mature, addressing these barriers will enable the transition of 3D printing from niche applications to a more widespread technique for 3D culture, high-throughput screening, and device and implant fabrication.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential’]

Share this Article


Recent News

GE Additive Partnership to Establish BEAMIT Metal 3D Printing Powerhouse

Design for Disruption: 3D Printing Design for Installation



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Dream 3D Printing Soonicorns: Essentium, ICON & More

As of July 2021, 291 companies achieved the coveted mythical $1 billion status, far surpassing any previous year’s peak, according to financial platform Crunchbase. With 2021 proving to be a...

Massive 3D Printed Park Erected in Shenzen, China

Forget the mutually reinforcing buildup of their respective militaries – the real battle between the United States and China is in the field of 3D printing! You’ve probably heard of...

Featured

3D Printing Innovator’s Roundtable Webinar: Ditching DfAM and Embracing Design Freedom

In an industry where change is constant and unpredictable, professionals across the manufacturing industry have turned to additive manufacturing (AM) to overcome design and supply chain challenges. But conventional AM...

Startup Accelerator, Singapore: Dental 3D Printing, Services, and More

This is the eighth article detailing the 3D printing startup scene in Singapore. Teehee Dental Works Teehee Dental Works is a dental lab and dentist with a difference. Along with...


Shop

View our broad assortment of in house and third party products.