In ‘Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration,’ researchers from Nanjing Medical University experiment with coated scaffolds for furthering cell regeneration in patients. The authors realized the importance of such a study due to the challenges often encountered in renewing cartilage after physical damage.
While lithium is well-known for controlling bipolar disorder, previous research has shown that it may influence lessening the effects of arthritis, as well as preventing cartilage degradation in osteoarthritis. Here, the researchers investigated the use of lithium in creating poly-e-caprolactone (PCL) scaffolds, and then refining them further into a PCL-PDA-Li scaffold – (where the PDA as an abbreviation for polydopamine).
The authors then continued to evaluate the structures for:
- Physiochemical properties
- Bioactivity
- Biocompatibility
They also compared them to PCL scaffolds and PCL-PDA scaffolds upon 3D printing a range of samples. While the pure PCL scaffolds were white (as in the normal color of PCL), PCL-PDA and PCL-PDA-Li scaffolds were dark brown after the researchers applied the PDA coating. The addition of lithium did not change coloration at all in scaffolding. All three scaffolds were smooth, but there were differences in the PCL-PDA scaffolds with small granules, and LiCl crystals attached to the granules in the PCL-PDA-Li scaffolds.
The researchers stated that hydrophilic scaffolds like PCL-PDA and PCL-PDA-Li scaffolds can provide better adherence of cells. There were no obvious disparities between the samples in mechanical properties within this research study. Ultimately, however, the researchers stated that they still found the lithium to be lacking in the desired effect for scaffolding and consequent tissue regeneration.
“Improvement of scaffolds is needed to provide a better environment for chondrogenesis,” stated the researchers. “Due to the poor expansion capacity, chondrocytes are not an ideal choice for cartilage tissue engineering. BMSCs have an extraordinary potential for proliferation and multipotential differentiation, including chondrogenesis, can be easily harvested by bone marrow.”
Overall upon comparing all the samples, the researchers discovered that PCL has the best strength and biodegradation, making it more suitable for scaffolds.
“We successfully synthesized PCL-PDA-Li scaffolds by 3D printing following a simple 2-step method. PDA coating and LiCl deposition improves surface hydrophilicity without sacrificing mechanical strength. In vitro experiments showed that PCLPDA-Li scaffolds promote better chondrocyte adhesion and cartilage matrix deposition. Our results demonstrate a better method for lithium administration and present a promising scaffold for cartilage tissue engineering,” concluded the researchers.
Tissue engineering today allows for the creation of new cells and structures able to heal patients in need; regeneration of cartilage is one area that is challenging, along with bone regeneration, skin grafts, and scaffolding for breast reconstruction. Find out more about 3D printed scaffolds for enhanced cartilage regeneration here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
New AM Projects Get $2.1M Push from America Makes
America Makes has awarded $2.1 million to six new projects to tackle some of the biggest challenges in additive manufacturing (AM). The funding, provided by the U.S. Department of Defense...
Open Source Lab Instrument with 3D Printed Components Autonomously Monitors Embryos
There are several examples of 3D printed robots being used to help with aquatic research, but never anything quite like the autonomous LabEmbryoCam, developed over the past decade by the...
3D Printing News Briefs, December 28, 2024: Awards, Fast-Curing Silicone Ink, & More
We’re starting off with awards in today’s 3D Printing News Briefs, and then moving on to some interesting AM materials news. Read on for all the details! SME Recognizes Manufacturing...
ICON and Lennar to Build 100 3D Printed Homes for the Homeless
Additive construction startup ICON plans to build 100 3D-printed homes. Partnering with Austin, Texas-based homeless charity Mobile Loaves & Fishes, the initiative builds upon 17 3D-printed homes previously completed at...