BMF Debuts microArch, Claims to be the “Most Accurate and Precise” Microscale 3D Printer

Share this Article

A new startup called Boston Micro Fabrication (BMF) has launched a high-resolution microscale 3D printer series dubbed microArch. BMF claims the system is the industry’s “most accurate and precise” microscale 3D printer. It should not be difficult to validate those claims due to the fact that over 40 microArch machines have already been operating across Asia for the past 18 months.

The microArch series relies on the firm’s proprietary Projection Micro-Stereolithography (PμSL) process. Similar to traditional digital light processing (DLP) 3D printing technology, PμSL uses a digital micro display projector to cure photopolymer resin one layer at a time at the microscale. In turn, PμSL is capable of printing objects 100 times smaller than a human hair.

The PμSL 3D printing process. Image courtesy of MIT.

BMF is a spin-out of MIT, where professor Nick Fang developed PμSL technology. Along with entrepreneur Xiaoning He and 3D printing technologist Chunguang Xia, Fang established BMF to commercialize his research. To head the firm as CEO, the team turned to former Zcorp CEO and Ultimaker executive John Kawola. The company is targeting the medical and electronics fields, among others, for use in rapid prototyping and possible mass production.

Fang explained the story behind the launch of the startup: “Curiosity was one of the primary drivers of this discovery. After realizing that we could print using light, we started to imagine the broader technology and business implications – envisioning how we might break down the barriers that previously prevented manufacturers from taking advantage of 3D printing for the production of microscale parts. At that moment we created the business to explore the possibilities and I am incredibly excited to see what our customers will accomplish using the microArch.”

Microscale 3D-printed parts made using PμSL. Image courtesy of BMF.

Among those clients is the University of Nottingham, the first European customer for a microArch 3D printer. There, Dr. Yinfeng says that the school will be utilizing the technology for researching electronics and biomedical devices.

In his research at MIT, Fang was able to demonstrate several unique capabilities with PμSL. For instance, unlike existing DLP technology, the light intensity of individual pixels in PμSL can be controlled, which results in the ability to modify the material properties of the object throughout the part. Moreover, multiple materials can be used in a single print process, including polymers responsive hydrogels, shape memory polymers and biological materials.

We don’t yet know if these capabilities will be available with the microArch series, but, out of the box, the systems are able to print down at a resolution of 2µ with tolerances of ±10µm /±25µm and at volumes that are cost competitive with injection molding. It will also support tough, elastic, casting, biocompatible and high-temperature resins. The series consists of five different printers ranging in printing area from 3.84 × 2.16 × 10mm to 48 × 27 × 50mm, in optical resolution from 2μm to 25μm, and in layer height from 5μm to 50μm.

A rendering of the microArch P140/S140/P150 machine. Image courtesy of BMF.

There are already numerous researchers who deploy microscale 3D printing, particularly for medical and electronics applications, as mentioned. A Northwestern University team used a form of microscale fabrication to create a terahertz lens. Lawrence Livermore National Laboratory has performed a great deal of research in this area, often creating meta materials that use unique microscale lattice structures to create different physical properties at the marcroscale.

The micro- and nanoscale 3D printing space is a small one, but it is growing as research like Fang’s is commercialized. The Vienna University of Technology, for instance, recently spun out its own micro-printing startup, UpNano, after previously spinning out another called Cubicure. Other companies include SwissLitho AG, Nanoscribe and Microlight3D. When these technologies herald a revolution of nanomedicines and electronics remains to be seen, but they demonstrate that we are witnessing the first steps in that revolution.

Share this Article


Recent News

Make:able Challenge: Design & 3D Print Assistive Technology for the Disabled

Motorized, 3D Printed Shoes Could Make Virtual Reality Truly Immersive



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

PEAK Launches Alien Beast 3D Printed Shoes for Limited Sale

In the fashion world, we have seen everything from haute couture collections to custom jewelry lines. Shoes of all kinds have been produced too, and usually tend to offer an...

Michigan Tech Develops Open Source Smart Vision for 3D Printing Quality Control

Monitoring and quality control systems are becoming more widespread in additive manufacturing as a means of ensuring repeatability and aiming for first-time-right parts. A greater need for quality control are...

What Has the 3D Printing Industry Learned During COVID-19?

The challenges of COVID-19 have been a unique learning opportunity for businesses and individuals alike. As the world scrambled to react to the outbreak, it highlighted both the strengths and...

Featured

Armis Slide: 3D Printed Shoes Made in a Single Print

3D printing has had an revolutionary impact on the industrial world at numerous levels. While in some areas, researchers are producing groundbreaking studies and inventions as in medicine, other innovators...


Shop

View our broad assortment of in house and third party products.