
Through the two-photon lithography (TPL) 3D printing process, researchers can print woodpile lattices with submicron features a fraction of the width of a human hair. [Image: James Oakdale/LLNL]
Two-photon lithography differs from other 3D printing methods because it’s able to produce features smaller than the point of the laser. It’s able to bypass the usual diffraction limit because the photoresist material that cures and hardens to create structures can simultaneously absorb two photons instead of one. Normally, the technique requires a thin glass slide, a lens and an immersion oil that helps the laser light focus to its fine point.
The LLNL team detailed its research in a paper entitled “Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography,” which you can access here. In the paper, the researchers describe how they cracked the code on resist materials optimized for two-photon lithography and forming 3D microstructures with features less than 150 nanometers. Past techniques would build structures from the ground up, limiting the size of the object because the distance between the glass slide and the lens was typically 200 microns or less. But by putting the resist material directly on the lens and focusing the laser through the resist, the researchers could 3D print objects multiple millimeters in height.

LLNL researchers printed octet truss structures with submicron features on top of a solid base with a diameter similar to human hair. [Image: James Oakdale/LLNL]
“In this paper, we have unlocked the secrets to making custom materials on two-photon lithography systems without losing resolution,” said LLNL researcher James Oakdale.
The laser light refracts as it passes through the photoresist material, so the key, according to the researchers, was “index matching,” or figuring out how to match the refractive index of the resist material to the immersion medium of the lens so the laser could pass through unimpeded. Index matching makes it possible to 3D print larger parts with features as small as 100 nm.
“Most researchers who want to use two-photon lithography for printing functional 3D structures want parts taller than 100 microns,” said Sourabh Saha, the paper’s lead author. “With these index-matched resists, you can print structures as tall as you want. The only limitation is the speed. It’s a tradeoff, but now that we know how to do this, we can diagnose and improve the process.”

LLNL researchers can print woodpile lattices with submicron features a fraction of the width of a human hair. [Image: Jacob Long and Adam Connell/LLNL]
The next goal is to parallelize and speed up the process. The researchers also want to create even smaller features and add more functionality, eventually using the technique to 3D print mission-critical parts.
“It’s a very small piece of the puzzle that we solved, but we are much more confident in our abilities to start playing in this field now,” Saha said. “We’re on a path where we know we have a potential solution for different types of applications. Our push for smaller and smaller features in larger and larger structures is bringing us closer to the forefront of scientific research that the rest of the world is doing. And on the application side, we’re developing new practical ways of printing things.”
Authors of the paper include Sourabh K. Saha, James S. Oakdale, Jefferson A. Cuadra, Chuck Divin, Jianchao Ye, Jean-Baptiste Forien, Leonardus B. Bayu Aji, Juergen Biener, and William L. Smith.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: LLNL]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Havaianas Collaborates with Zellerfeld to Launch 3D Printed Flip-Flops
The shoe of the summer is undoubtedly the flip-flop. Easy on, easy off, your feet won’t get sweaty because there’s not much material, and they’re available in a veritable rainbow...
UCLA Researchers Develop 3D Printed Pen that May Help Detect Parkinson’s Disease
Diagnosing Parkinson’s disease is difficult. Often, early symptoms of the progressive neurological condition may be overlooked, or mistaken for signs of aging. Early diagnosis can help save lives and improve...
Printing Money Episode 30: Q1 2025 Public 3D Printing Earnings Review with Troy Jensen, Cantor Fitzgerald
Printing Money is back with Episode 30, and it’s that quarterly time, so we are happy and thankful to welcome back Troy Jensen (Managing Director, Cantor Fitzgerald) to review the...
Heating Up: 3D Systems’ Scott Green Discusses 3D Printing’s Potential in the Data Center Industry
The relentless rise of NVIDIA, the steadily increasing pledges of major private and public investments in national infrastructure projects around the world, and the general cultural obsession with AI have...